Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 124: 155280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183697

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine condition in premenopausal women. Troxerutin, a common clinical anti-coagulant agent, was shown to work as a strong IL-22 boosting agent counteracting the hyperactivated gonadotrophin releasing hormone (GnRH) neurons and heightened GnRH release, the neuroendocrine origin of PCOS with unknown mechanism in rats. Exploring the off-label use of troxerutin medication for PCOS is thus sorely needed. METHODS: Serum IL-22 content and hypothalamic IL-22 protein were detected. Inflammatory factor levels in hypothalamo-pituitary were evaluated. Immunofluorescence staining was employed to determine the activation and M1/M2-prone polarization of microglia in arcuate hypothalamus and median eminence. RNA-sequencing and transcriptome analysis were applied to explore the potential driver of microglia M2-polarization in response to IL-22 bolstering effect. The function of microglial IL-22/IL-22R1/IRF3 system was further verified using in vivo knockdown of IL-22R1 and a potent IRF3 inhibitor in BV2 microglial cell lines in vitro. RESULTS: Troxerutin augmented serum IL-22 content, and its consequent spillover into the hypothalamus led to the direct activation of IL-22R1/IRF3 system on microglia, thereby promoted microglia M2 polarization in arcuate hypothalamus and median eminence, dampened hypothalamic neuroinflammation, inhibited hyperactive GnRH and rescued a breadth of PCOS-like traits in dihydrotestosterone (DHT) rats. The salutary effects of troxerutin treatment on hypothalamic neuroinflammation, microglial M1/2 polarization, GnRH secretion and numerous PCOS-like features were blocked by in vivo knockdown of IL-22R1. Moreover, evidence in vitro illustrated that IL-22 supplement to BV-2 microglia cell lines promoted M2 polarization, overproduction of anti-inflammatory marker and limitation of pro-inflammatory factors, whereas these IL-22 effects were blunted by geldanamycin, a potent IRF3 inhibitor. CONCLUSION: Here, the present study reported the potential off-label use of troxerutin medication, a common clinical anti-coagulant agent and an endogenous IL-22 enhancer, for multiple purposes in PCOS. The rational underlying the application of troxerutin as a therapeutic choice in PCOS derived from its activity as an IL-22 memetic agent targeting the neuro-endocrine origin of PCOS, and its promotive impact on microglia M2 polarization via activating microglial IL-22R1/IRF3 system in the arcuate hypothalamus and median eminence of DHT female rats.


Assuntos
Hidroxietilrutosídeo/análogos & derivados , Síndrome do Ovário Policístico , Receptores de Interleucina , Humanos , Ratos , Feminino , Animais , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Di-Hidrotestosterona/efeitos adversos , Di-Hidrotestosterona/metabolismo , Microglia , Doenças Neuroinflamatórias , Interleucina 22 , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/efeitos adversos , Hormônio Liberador de Gonadotropina/metabolismo , Fator Regulador 3 de Interferon/metabolismo
2.
J Chem Neuroanat ; 136: 102375, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38123002

RESUMO

Demyelinating diseases are a type of neurological disorder characterized by the damage to the myelin sheath in the central nervous system. Promoting the proliferation and differentiation of oligodendrocyte precursor cells (OPCs) is crucial for treatment. Non-selective muscarinic receptor (MR) antagonists have been shown to improve remyelination in rodent models, although the mechanisms are still unclear. In this study, we treated cuprizone (CPZ)-induced demyelination mouse model with different concentrations of Solifenacin (Sol), a selective M3 receptor antagonist, to determine the optimal concentration for promoting remyelination. Behavioral tests and Luxol fast blue (LFB) staining were used to observe the extent of remyelination, while immunofluorescence was used to measure the expression levels of myelin-related proteins, including myelin basic protein (MBP) and platelet-derived growth factor receptor alpha (PDGFR-α). Western blot analysis was employed to analyze the expression levels of molecules associated with the Wnt/ß-catenin signaling pathway. The results showed that Sol treatment significantly promoted myelin regeneration and OPCs differentiation in CPZ-induced demyelination mouse model. Additionally, Sol treatment inhibited the Wnt/ß-catenin signaling pathway and reversed the effects of CPZ on OPCs differentiation. In conclusion, Sol may promote the differentiation of OPCs by inhibiting the Wnt/ß-catenin signaling pathway, making it a potential therapeutic option for central nervous system demyelinating diseases.


Assuntos
Doenças Desmielinizantes , Remielinização , Camundongos , Animais , Cuprizona/toxicidade , Succinato de Solifenacina/efeitos adversos , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Via de Sinalização Wnt , Oligodendroglia , Diferenciação Celular , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
J Ethnopharmacol ; 324: 117770, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38219877

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: To explore the differences in the anti-inflammatory efficacy and mechanisms of the Miao medicine, both raw and after processing, using the "sweat soaking method" of Radix Wikstroemia indica (RWI). AIM OF THE STUDY: The purpose of this study was to explore the differences in the anti-inflammatory efficacy and mechanism of action before and after the processing of the Miao medicine (RWI) using the "sweat soaking method." MATERIALS AND METHODS: Network pharmacology technology was used to construct the "drug-component target-pathway-disease" network, and the main anti-inflammatory pathways of RWI were identified. Rat models of collagen-induced arthritis were established. The changes in body weight, swelling rate of the foot pad and ankle joint, arthritis index, thymus index, spleen index, pathological changes of the ankle joint, and the content of inflammatory cytokines (IL-1ß, IL-2, IL-6, IL-10, TNF-α, and NO) were used as indices to evaluate the effect of RWI on rats with collagen-induced arthritis before and after its processing. Plasma and urine samples were collected from the rats, and the potential biomarkers of, and metabolic pathways underlying the anti-inflammatory effects of RWI before and after processing were identified using 1H-Nuclear magnetic resonance metabolomics combined with a multivariate statistical analysis. RESULTS: Eleven key anti-inflammatory targets of IL6, IL-1ß, TNF, ALB, AKT1, IFNG, INS, STAT3, EGFR, TP53, and SRC were identified by network pharmacology. The PI3K-Akt signaling pathway, steroid hormone biosynthesis, arginine biosynthesis, arginine and proline metabolism, tryptophan metabolism, and other pathways were mainly involved in these effects. Pharmacodynamic studies found that both raw and processed RWI products downregulated inflammatory factors in rats with collagen-induced arthritis and alleviated the pathological changes. A total of 41 potential pathways for the anti-inflammatory effects of raw RWI products and 36 potential pathways for the anti-inflammatory effects of processed RWI products were identified by plasma and urine metabolomics. The common pathways of network pharmacology and metabolomics were steroid hormone biosynthesis, arginine biosynthesis, arginine and proline metabolism, and tryptophan metabolism. CONCLUSIONS: The anti-inflammatory effect of RWI was mainly related to the regulation of steroid hormone biosynthesis, arginine biosynthesis, arginine and proline metabolism, and tryptophan metabolism. Finally, the "sweat soaking method" enhanced the anti-inflammatory effect of RWI.


Assuntos
Artrite Experimental , Medicamentos de Ervas Chinesas , Wikstroemia , Ratos , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Suor/química , Fosfatidilinositol 3-Quinases , Triptofano , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/análise , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Arginina , Esteroides , Hormônios , Prolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA