RESUMO
Photoelectrochemical (PEC) cells provide a promising solution for the synthesis of hydrogen peroxide (H2O2). Herein, an integrated photocathode of p-type BiVO4 (p-BVO) array with tetragonal zircon structure coupled with different metal oxide (MOx, M = Sn, Ti, Ni, and Zn) heterostructure and NiNC cocatalyst (p-BVO/MOx/NiNC) was synthesized for the PEC oxygen reduction reaction (ORR) in production of H2O2. The p-BVO/SnO2/NiNC array achieves the production rate 65.46 µmol L-1 h-1 of H2O2 with a Faraday efficiency (FE) of 76.12%. Combined with the H2O2 generation of water oxidation from the n-type Mo-doped BiVO4 (n-Mo:BVO) photoanode, the unbiased photoelectrochemical cell composed of a p-BVO/SnO2/NiNC photocathode and n-Mo:BVO photoanode achieves a total FE of 97.67% for H2O2 generation. The large area BiVO4-based tandem cell of 3 × 3 cm2 can reach a total H2O2 production yield of 338.84 µmol L-1. This work paves the way for the rational design and fabrication of artificial photosynthetic cells for the production of liquid solar fuel.
RESUMO
Sluggish oxygen evolution kinetics and serious charge recombination restrict the development of photoelectrochemical (PEC) water splitting. The advancement of novel metal-organic frameworks (MOFs) catalysts bears practical significance for improving PEC water splitting performance. Herein, a MOF glass catalyst through melting glass-forming cobalt-based zeolitic imidazolate framework (Co-ag ZIF-62) was introduced on various metal oxide (MO: Fe2 O3 , WO3 and BiVO4 ) semiconductor substrates coupled with NiO hole transport layer, constructing the integrated Co-ag ZIF-62/NiO/MO photoanodes. Owing to the excellent conductivity, stability and open active sites of MOF glass, Co-ag ZIF-62/NiO/MO photoanodes exhibit a significantly enhanced photoelectrochemical water oxidation activity and stability in comparison to pristine MO photoanodes. From experimental analyses and density functional theory calculations, Co-ag ZIF-62 can effectively promote charge transfer and separation, improve carrier mobility, accelerate the kinetics of oxygen evolution reaction (OER), and thus improve PEC performance. This MOF glass not only serves as an excellent OER cocatalyst on tunable photoelectrodes, but also enables promising opportunities for PEC devices for solar energy conversion.
RESUMO
Solar carbon dioxide (CO2) conversion is an emerging solution to meet the challenges of sustainable energy systems and environmental/climate concerns. However, the construction of isolated active sites not only influences catalytic activity but also limits the understanding of the structure-catalyst relationship of CO2 reduction. Herein, we develop a universal synthetic protocol to fabricate different single-atom metal sites (e.g., Fe, Co, Ni, Zn, Cu, Mn, and Ru) anchored on the triazine-based covalent organic framework (SAS/Tr-COF) backbone with the bridging structure of metal-nitrogen-chlorine for high-performance catalytic CO2 reduction. Remarkably, the as-synthesized Fe SAS/Tr-COF as a representative catalyst achieved an impressive CO generation rate as high as 980.3 µmol g-1 h-1 and a selectivity of 96.4%, over approximately 26 times higher than that of the pristine Tr-COF under visible light irradiation. From X-ray absorption fine structure analysis and density functional theory calculations, the superior photocatalytic performance is attributed to the synergic effect of atomically dispersed metal sites and Tr-COF host, decreasing the reaction energy barriers for the formation of *COOH intermediates and promoting CO2 adsorption and activation as well as CO desorption. This work not only affords rational design of state-of-the-art catalysts at the molecular level but also provides in-depth insights for efficient CO2 conversion.
RESUMO
The development of semiconductor photoanodes is of great practical interest for the realization of photoelectrochemical (PEC) water splitting. Herein, MXene quantum dots (MQD) were grafted on a BiVO4 substrate, then a MoOx layer by combining an ultrathin oxyhydroxide oxygen evolution cocatalyst (OEC) was constructed as an integrated photoanode. The OEC/MoOx /MQD/BiVO4 array not only achieves a current density of 5.85â mA cm-2 at 1.23â V versus a reversible hydrogen electrode (vs. RHE), but also enhances photostability. From electrochemical analysis and density functional theory calculations, high PEC performance is ascribed to the incorporation of MoOx /MQD as hole transfer layers, retarding charge recombination, promoting hole transfer and accelerating water splitting kinetics. This proof-of-principle work not only demonstrates the potential utilization of hole transfer layers, but also sheds light on rational design and fabrication of integrated photoanodes for feasible solar energy conversion.
RESUMO
Regulation of charge transport at the molecular level is essential to elucidating the kinetics of junction photoelectrodes across the heterointerface for photoelectrochemical (PEC) water oxidation. Herein, an integrated photoanode as the prototype was constructed by use of a 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin-cobalt molecule (CoTCPP) and ZnO on hematite (α-Fe2O3) photoanode. CoTCPP molecules serve as a typical hole transport layer (HTL), accelerating the transport of the photogenerated holes to oxygen evolution cocatalysts (OECs). Meanwhile, ZnO as the surface passivation layer (SPL) can passivate the interfacial state and reduce the level of electron leakage from hematite into the electrolyte. After the integration of OECs, the state-of-the-art α-Fe2O3/ZnO/CoTCPP/OECs photoanode exhibits a distinguished photocurrent density and excellent stability in comparison with pristine α-Fe2O3. The simultaneous incorporation of a ZnO and CoTCPP dual interlayer can effectively modulate the interfacial photoinduced charge transfer for PEC reaction. This work provides in-depth insights into interfacial charge transfer across junction electrodes and identifies the critical roles of solar PEC conversion.
RESUMO
Photoredox catalysis has become an indispensable solution for the synthesis of small organic molecules. However, the precise construction of single-atomic active sites not only determines the catalytic performance, but also avails the understanding of structure-activity relationship. Herein, we develop a facile approach to immobilize single-atom Ni sites anchored porous covalent organic framework (COF) by use of 4,4',4â³-(1,3,5-triazine-2,4,6-triyl)trianiline and 2,6-diformylpyridine (Ni SAS/TD-COF). Ni SAS/TD-COF catalyst achieves excellent catalytic performance in visible-light-driven catalytic carbon-nitrogen cross-coupling reaction between aryl bromides and amines under mild conditions. The reaction provides amine products in excellent yields (71%-97%) with a wide range of substrates, including aryl and heteroaryl bromides with electron-deficient, electron-rich and neutral groups. Notably, Ni SAS/TD-COF could be recovered from the reaction mixture, corresponding to the negligible loss of photoredox performance after several cycles. This work provides a promising opportunity upon rational design of single-atomic active sites on COFs and the fundamental insight of photoredox mechanism for sustainable organic transformation.