Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 155(1): 014306, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241382

RESUMO

The present study aims at probing the influence of different substituents of sodium carboxylate salts R-COO-:Na+ in aqueous solutions, with R = H, CH3, C2H5, CH2Cl, CF3, and C6H5. X-ray absorption spectroscopy was used in the oxygen K-edge region to highlight the effect of R on the energy position of the O1s-to-πCOO* resonance of the carboxylate ion. Ab initio static exchange and ΔSCF calculations are performed and confirm the experimental observations. We qualitatively discuss the results on the basis of the polar properties of these groups as well as on the basis of the πCOO* orbital energy in the ground states, the oxygen 1s orbital ionization energy, and the O1s-to-πCOO* resonance energy.

2.
Phys Rev Lett ; 119(26): 263003, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29328710

RESUMO

X-ray photoelectron and KLL Auger spectra were measured for the K^{+} and Cl^{-} ions in aqueous KCl solution. While the XPS spectra of these ions have similar structures, both exhibiting only weak satellites near the main line, the Auger spectra differ dramatically. Contrary to the chloride case, a very strong extra peak was found in the Auger spectrum of K^{+} at the low kinetic energy side of the ^{1}D state. Using the equivalent core model and ab initio calculations this spectral feature was assigned to electron transfer processes from solvent water molecules to the solvated cation. The observed charge transfer processes are suggested to play an important role in charge redistribution following single and multiple core-hole creation in atoms and molecules placed into environment.

3.
Nat Mater ; 10(2): 114-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21240289

RESUMO

Many-body interactions in transition-metal oxides give rise to a wide range of functional properties, such as high-temperature superconductivity, colossal magnetoresistance or multiferroicity . The seminal recent discovery of a two-dimensional electron gas (2DEG) at the interface of the insulating oxides LaAlO(3) and SrTiO(3) (ref. 4) represents an important milestone towards exploiting such properties in all-oxide devices. This conducting interface shows a number of appealing properties, including a high electron mobility, superconductivity and large magnetoresistance, and can be patterned on the few-nanometre length scale. However, the microscopic origin of the interface 2DEG is poorly understood. Here, we show that a similar 2DEG, with an electron density as large as 8×10(13) cm(-2), can be formed at the bare SrTiO(3) surface. Furthermore, we find that the 2DEG density can be controlled through exposure of the surface to intense ultraviolet light. Subsequent angle-resolved photoemission spectroscopy measurements reveal an unusual coexistence of a light quasiparticle mass and signatures of strong many-body interactions.

4.
RSC Adv ; 10(30): 17673-17680, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35515618

RESUMO

Poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS) is often used as a hole injection and extractor for various organic electronic devices. This study investigated whether it is possible to n-dope PEDOT:PSS with barium acetylacetonate (Ba(acac)2) to change its work function so that to be more suitable for electron injection and extraction. Molecular dynamics simulations suggested that barium cations can interact with the aromatic rings of PEDOT and the negatively charged sulfonate in PSS. At high doping concentration, we found that PEDOT became dedoped and precipitated resulting in a clear solution after filtration. The absence of the absorption peak of PEDOT at 263 nm indicates the removal of PEDOT after filtration. The shift in O 1s to a lower binding energy as seen in X-ray photoelectron spectroscopy suggested that the polystyrene sulfonic acids are being ionized to form barium polystyrene sulfonate (Ba-PSS). By spin-coating the solution on top of indium tin oxide, the work function can be adjusted to as low as 3.6 eV. The ability of such a mixture to inject and extract electrons is demonstrated using 2,7-bis(diphenylphosphoryl)-9,9'-spirobifluorene as an electron transporting layer. We attributed the lowering of the work function as the result of the formation of an interfacial dipole as large as 1.37 eV at the ITO/Ba-PSS interface.

5.
J Phys Condens Matter ; 21(5): 055007, 2009 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21817294

RESUMO

We have measured the M(2,3)VV Auger spectra of Cu(110) and studied the final state interaction following the Cu 3p core electron excitation. We have observed that the kinetic energy of the M(2,3)VV Auger electron shifts to an energy higher than that of the normal Auger electrons near the Cu 3p threshold, and it converges to the constant kinetic energy of the normal Auger electrons as the excitation energy increases above the Cu 3p threshold. In the excitation energy dependence of the kinetic energies of the M(2,3)VV Auger electrons, we observed step features at the excitation energies corresponding to the 3p core electron excitations to the L(1) and X(1) van Hove singularities in the valence states. The kinetic energy shifts of the M(2,3)VV Auger electrons are reasonably understood by considering the localization of the two-hole Auger final state and the hybridization between Cu 3d states and other valence states.

6.
Water Sci Technol ; 55(12): 153-60, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17674842

RESUMO

Doped and undoped titanium dioxide films have been deposited on indium tin oxide glass using the sol-gel technique. The percentage of rutile in the prepared TiO2, calcined at 823 K and determined by X-ray diffraction, was 23% compared to 24% of rutile in P25-TiO2. Cerium doped TiO2 showed mainly the anatase phase, as characterised by both X-ray diffraction and Raman spectroscopy. The electrochemical and photoelectrochemical properties of the films were studied by cyclic voltammetry and electrochemical impedance spectroscopy. The (photo)electrochemical characteristics of the different films are reported and discussed.


Assuntos
Transição de Fase , Titânio/química , Eletroquímica , Eletrodos , Géis/química , Fotoquímica , Difração de Raios X
7.
J Phys Condens Matter ; 28(36): 365002, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27390863

RESUMO

UNLABELLED: The interfacial properties between electrodes and the various organic layers that comprise an organic electronic device are of direct relevance in understanding charge injection, extraction and generation. The energy levels and energy-bending of three interfaces; indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate ( PEDOT: PSS), ITO/poly(N-vinylcarbazole) (PVK) and PEDOT: PSS/PVK were measured using ultraviolet photoelectron spectroscopy (UPS) and x-ray photoelectron spectroscopy (XPS). By decoupling the vacuum shift and energy-bending, the energy-bending at these interfaces can be simulated using an electrostatic model that takes into account the energetic disorder of the polymers. The model is further extended to include blended mixtures of semiconductors at differing concentrations and it was found that a very good agreement exists between the experiment and theory for all interfaces. This suggests that the electrostatic model can be used to describe energy-bending at the interface between any organic semiconductors. Further investigation into the effect of the Gaussian density of states width on energy-bending is warranted.

8.
ACS Appl Mater Interfaces ; 6(24): 22051-60, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25422873

RESUMO

In this work, we report an ultrasensitive hydrogen (H2) sensor based on tungsten trioxide (WO3) nanorods decorated with platinum (Pt) nanoparticles. WO3 nanorods were fabricated by dc magnetron sputtering with a glancing angle deposition (GLAD) technique, and decorations of Pt nanoparticles were performed by normal dc sputtering on WO3 nanorods with varying deposition time from 2.5 to 15 s. Crystal structures, morphologies, and chemical information on Pt-decorated WO3 nanorods were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectron spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of WO3 nanorods was investigated over a low concentration range of 150-3000 ppm of H2 at 150-350 °C working temperatures. The results showed that the H2 response greatly increased with increasing Pt-deposition time up to 10 s but then substantially deteriorated as the deposition time increased further. The optimally decorated Pt-WO3 nanorod sensor exhibited an ultrahigh H2 response from 1530 and 214,000 to 150 and 3000 ppm of H2, respectively, at 200 °C. The outstanding gas-sensing properties may be attributed to the excellent dispersion of fine Pt nanoparticles on WO3 nanorods having a very large effective surface area, leading to highly effective spillover of molecular hydrogen through Pt nanoparticles onto the WO3 nanorod surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA