Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Immunity ; 52(6): 1022-1038.e7, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32454024

RESUMO

Class-switched antibodies to double-stranded DNA (dsDNA) are prevalent and pathogenic in systemic lupus erythematosus (SLE), yet mechanisms of their development remain poorly understood. Humans and mice lacking secreted DNase DNASE1L3 develop rapid anti-dsDNA antibody responses and SLE-like disease. We report that anti-DNA responses in Dnase1l3-/- mice require CD40L-mediated T cell help, but proceed independently of germinal center formation via short-lived antibody-forming cells (AFCs) localized to extrafollicular regions. Type I interferon (IFN-I) signaling and IFN-I-producing plasmacytoid dendritic cells (pDCs) facilitate the differentiation of DNA-reactive AFCs in vivo and in vitro and are required for downstream manifestations of autoimmunity. Moreover, the endosomal DNA sensor TLR9 promotes anti-dsDNA responses and SLE-like disease in Dnase1l3-/- mice redundantly with another nucleic acid-sensing receptor, TLR7. These results establish extrafollicular B cell differentiation into short-lived AFCs as a key mechanism of anti-DNA autoreactivity and reveal a major contribution of pDCs, endosomal Toll-like receptors (TLRs), and IFN-I to this pathway.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Comunicação Celular , DNA/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interferon Tipo I/metabolismo , Animais , Anticorpos Antinucleares/imunologia , Autoantígenos/imunologia , Autoimunidade , Biomarcadores , Ligante de CD40/deficiência , Comunicação Celular/genética , Comunicação Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Endodesoxirribonucleases/deficiência , Imunofluorescência , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Camundongos Knockout , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo
2.
J Immunol ; 211(10): 1475-1480, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37800687

RESUMO

Autoantibodies to chromatin and dsDNA are a hallmark of systemic lupus erythematosus (SLE). In a mouse model of monogenic human SLE caused by DNASE1L3 deficiency, the anti-DNA response is dependent on endosomal nucleic acid-sensing TLRs TLR7 and TLR9. In this study, we report that this response also required TLR2, a surface receptor for microbial products that is primarily expressed on myeloid cells. Cell transfers into lymphopenic DNASE1L3-deficient mice showed that TLR2 was required for anti-DNA Ab production by lymphocytes. TLR2 was detectably expressed on B cells and facilitated the production of IL-6 by B cells activated in the presence of microbial products. Accordingly, treatment with broad-spectrum antibiotics or Ab-mediated blockade of IL-6 delayed the anti-DNA response in DNASE1L3-deficient mice. These studies reveal an unexpected B cell-intrinsic role of TLR2 in systemic autoreactivity to DNA, and they suggest that microbial products may synergize with self-DNA in the activation of autoreactive B cells in SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Receptor 2 Toll-Like , Camundongos , Animais , Humanos , Interleucina-6 , Linfócitos B , Autoanticorpos , Anticorpos Antinucleares , DNA
3.
Proc Natl Acad Sci U S A ; 116(2): 641-649, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30593563

RESUMO

Circulating DNA in plasma consists of short DNA fragments. The biological processes generating such fragments are not well understood. DNASE1L3 is a secreted DNASE1-like nuclease capable of digesting DNA in chromatin, and its absence causes anti-DNA responses and autoimmunity in humans and mice. We found that the deletion of Dnase1l3 in mice resulted in aberrations in the fragmentation of plasma DNA. Such aberrations included an increase in short DNA molecules below 120 bp, which was positively correlated with anti-DNA antibody levels. We also observed an increase in long, multinucleosomal DNA molecules and decreased frequencies of the most common end motifs found in plasma DNA. These aberrations were independent of anti-DNA response, suggesting that they represented a primary effect of DNASE1L3 loss. Pregnant Dnase1l3-/- mice carrying Dnase1l3+/- fetuses showed a partial restoration of normal frequencies of plasma DNA end motifs, suggesting that DNASE1L3 from Dnase1l3-proficient fetuses could enter maternal systemic circulation and affect both fetal and maternal DNA fragmentation in a systemic as well as local manner. However, the observed shortening of circulating fetal DNA relative to maternal DNA was not affected by the deletion of Dnase1l3 Collectively, our findings demonstrate that DNASE1L3 plays a role in circulating plasma DNA homeostasis by enhancing fragmentation and influencing end-motif frequencies. These results support a distinct role of DNASE1L3 as a regulator of the physical form and availability of cell-free DNA and may have important implications for the mechanism whereby this enzyme prevents autoimmunity.


Assuntos
Ácidos Nucleicos Livres/sangue , Fragmentação do DNA , DNA/sangue , Endodesoxirribonucleases/metabolismo , Motivos de Nucleotídeos , Animais , Ácidos Nucleicos Livres/genética , DNA/genética , Endodesoxirribonucleases/genética , Feminino , Feto/metabolismo , Deleção de Genes , Camundongos , Camundongos Knockout , Gravidez
4.
PLoS Pathog ; 13(6): e1006435, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28614386

RESUMO

The goal of the innate immune system is to reduce pathogen spread prior to the initiation of an effective adaptive immune response. Following an infection at a peripheral site, virus typically drains through the lymph to the lymph node prior to entering the blood stream and being systemically disseminated. Therefore, there are three distinct spatial checkpoints at which intervention to prevent systemic spread of virus can occur, namely: 1) the site of infection, 2) the draining lymph node via filtration of lymph or 3) the systemic level via organs that filter the blood. We have previously shown that systemic depletion of phagocytic cells allows viral spread after dermal infection with Vaccinia virus (VACV), which infects naturally through the skin. Here we use multiple depletion methodologies to define both the spatial checkpoint and the identity of the cells that prevent systemic spread of VACV. Subcapsular sinus macrophages of the draining lymph node have been implicated as critical effectors in clearance of lymph borne viruses following peripheral infection. We find that monocyte populations recruited to the site of VACV infection play a critical role in control of local pathogenesis and tissue damage, but do not prevent dissemination of virus. Following infection with virulent VACV, the subcapsular sinus macrophages within the draining lymph node become infected, but are not exclusively required to prevent systemic spread. Rather, small doses of VACV enter the bloodstream and the function of systemic macrophages, but not dendritic cells, is required to prevent further spread. The results illustrate that a systemic innate response to a peripheral virus infection may be required to prevent widespread infection and pathology following infection with virulent viruses, such as poxviruses.


Assuntos
Imunidade Inata/imunologia , Macrófagos/imunologia , Vaccinia virus/imunologia , Vacínia/imunologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência
5.
J Immunol ; 199(12): 4001-4015, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29118245

RESUMO

Mer tyrosine kinase (Mer) signaling maintains immune tolerance by clearing apoptotic cells (ACs) and inducing immunoregulatory signals. We previously showed that Mer-deficient mice (Mer-/-) have increased germinal center (GC) responses, T cell activation, and AC accumulation within GCs. Accumulated ACs in GCs can undergo necrosis and release self-ligands, which may influence the outcome of a GC response and selection. In this study, we generated Mer-/- mice with a global MyD88, TLR7, or TLR9 deficiency and cell type-specific MyD88 deficiency to study the functional correlation between Mer and TLRs in the development of GC responses and autoimmunity. We found that GC B cell-intrinsic sensing of self-RNA, but not self-DNA, released from dead cells accumulated in GCs drives enhanced GC responses in Mer-/- mice. Although self-ligands directly affect GC B cell responses, the loss of Mer in dendritic cells promotes enhanced T cell activation and proinflammatory cytokine production. To study the impact of Mer deficiency on the development of autoimmunity, we generated autoimmune-prone B6.Sle1b mice deficient in Mer (Sle1bMer-/-). We observed accelerated autoimmunity development even under conditions where Sle1bMer-/- mice did not exhibit increased AC accumulation in GCs compared with B6.Sle1b mice, indicating that Mer immunoregulatory signaling in APCs regulates B cell selection and autoimmunity. We further found significant expansion, retention, and class-switching of autoreactive B cells in GCs under conditions where ACs accumulated in GCs of Sle1bMer-/- mice. Altogether, both the phagocytic and immunomodulatory functions of Mer regulate GC responses to prevent the development of autoimmunity.


Assuntos
Autoimunidade/imunologia , Centro Germinativo/imunologia , Tolerância a Antígenos Próprios/fisiologia , c-Mer Tirosina Quinase/fisiologia , Animais , Apresentação de Antígeno , Apoptose , Subpopulações de Linfócitos B/imunologia , Feminino , Imunização , Switching de Imunoglobulina , Rim/patologia , Masculino , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/imunologia , RNA/imunologia , Organismos Livres de Patógenos Específicos , Receptor 7 Toll-Like/deficiência , Receptor Toll-Like 9/deficiência , c-Mer Tirosina Quinase/deficiência , c-Mer Tirosina Quinase/genética
6.
Immunol Cell Biol ; 96(3): 298-315, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29345385

RESUMO

Mer Tyrosine Kinase receptor (Mer) is involved in anti-inflammatory efferocytosis. Here we report elevated spontaneous germinal center (Spt-GC) responses in Mer-deficient mice (Mer-/- ) that are associated with the loss of SIGN-R1+ marginal zone macrophages (MZMs). The dissipation of MZMs in Mer-/- mice occurs independently of reduced cellularity or delocalization of marginal zone B cells, sinusoidal cells or of CD169+ metallophillic macrophages. We find that MZM dissipation in Mer-/- mice contributes to apoptotic cell (AC) accumulation in Spt-GCs and dysregulation of the GC checkpoint, allowing an expansion of DNA-reactive B cells in GCs. We further observe that bone marrow derived macrophages from Mer-/- mice produce more TNFα, and are susceptible to cell death upon exposure to ACs compared to WT macrophages. Anti-TNFα Ab treatment of Mer-/- mice is, however, unable to reverse MZM loss, but results in reduced Spt-GC responses, indicating that TNFα promotes Spt-GC responses in Mer-/- mice. Contrary to an anti-TNFα Ab treatment, treatment of Mer-/- mice with a synthetic agonist for the transcription factor LXRα rescues a significant number of MZMs in vivo. Our data suggest that Mer-LXRα signaling plays an important role in the differentiation and maintenance of MZMs, which in turn regulate Spt-GC responses and tolerance.


Assuntos
Moléculas de Adesão Celular/metabolismo , Centro Germinativo/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Receptores de Superfície Celular/metabolismo , c-Mer Tirosina Quinase/metabolismo , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linfócitos B/metabolismo , Benzoatos/farmacologia , Benzilaminas/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptores X do Fígado/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos Knockout , Linfócitos T/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , c-Mer Tirosina Quinase/deficiência
7.
J Immunol ; 194(9): 4130-43, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25801429

RESUMO

Signaling lymphocyte activation molecules (SLAMs) play an integral role in immune regulation. Polymorphisms in the SLAM family receptors are implicated in human and mouse model of lupus disease. The lupus-associated, somatically mutated, and class-switched pathogenic autoantibodies are generated in spontaneously developed germinal centers (GCs) in secondary lymphoid organs. The role and mechanism of B cell-intrinsic expression of polymorphic SLAM receptors that affect B cell tolerance at the GC checkpoint are not clear. In this study, we generated several bacterial artificial chromosome-transgenic mice that overexpress C57BL/6 (B6) alleles of different SLAM family genes on an autoimmune-prone B6.Sle1b background. B6.Sle1b mice overexpressing B6-derived Ly108 and CD84 exhibit a significant reduction in the spontaneously developed GC response and autoantibody production compared with B6.Sle1b mice. These data suggest a prominent role for Sle1b-derived Ly108 and CD84 in altering the GC checkpoint. We further confirm that expression of lupus-associated CD84 and Ly108 specifically on GC B cells in B6.Sle1b mice is sufficient to break B cell tolerance, leading to an increase in autoantibody production. In addition, we observe that B6.Sle1b B cells have reduced BCR signaling and a lower frequency of B cell-T cell conjugates; the reverse is seen in B6.Sle1b mice overexpressing B6 alleles of CD84 and Ly108. Finally, we find a significant decrease in apoptotic GC B cells in B6.Sle1b mice compared with B6 controls. Our study establishes a central role for GC B cell-specific CD84 and Ly108 expression in maintaining B cell tolerance in GCs and in preventing autoimmunity.


Assuntos
Antígenos CD/imunologia , Antígenos Ly/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Tolerância Imunológica/imunologia , Animais , Antígenos CD/genética , Antígenos Ly/genética , Feminino , Centro Germinativo/citologia , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Família de Moléculas de Sinalização da Ativação Linfocitária
8.
J Immunol ; 193(9): 4400-14, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25252960

RESUMO

Spontaneous germinal center (Spt-GC) B cells and follicular helper T cells generate high-affinity autoantibodies that are involved in the development of systemic lupus erythematosus. TLRs play a pivotal role in systemic lupus erythematosus pathogenesis. Although previous studies focused on the B cell-intrinsic role of TLR-MyD88 signaling on immune activation, autoantibody repertoire, and systemic inflammation, the mechanisms by which TLRs control the formation of Spt-GCs remain unclear. Using nonautoimmune C57BL/6 (B6) mice deficient in MyD88, TLR2, TLR3, TLR4, TLR7, or TLR9, we identified B cell-intrinsic TLR7 signaling as a prerequisite to Spt-GC formation without the confounding effects of autoimmune susceptibility genes and the overexpression of TLRs. TLR7 deficiency also rendered autoimmune B6.Sle1b mice unable to form Spt-GCs, leading to markedly decreased autoantibodies. Conversely, B6.yaa and B6.Sle1b.yaa mice expressing an extra copy of TLR7 and B6.Sle1b mice treated with a TLR7 agonist had increased Spt-GCs and follicular helper T cells. Further, TLR7/MyD88 deficiency led to compromised B cell proliferation and survival after B cell stimulation both in vitro and in vivo. In contrast, TLR9 inhibited Spt-GC development. Our findings demonstrate an absolute requirement for TLR7 and a negative regulatory function for TLR9 in Spt-GC formation under nonautoimmune and autoimmune conditions. Our data suggest that, under nonautoimmune conditions, Spt-GCs initiated by TLR7 produce protective Abs. However, in the presence of autoimmune susceptibility genes, TLR7-dependent Spt-GCs produce pathogenic autoantibodies. Thus, a single copy of TLR7 in B cells is the minimal requirement for breaking the GC-tolerance checkpoint.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Animais , Formação de Anticorpos/imunologia , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Autoimunidade , Linfócitos B/metabolismo , Sobrevivência Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Expressão Gênica , Centro Germinativo/metabolismo , Humanos , Imuno-Histoquímica , Imunofenotipagem , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Receptor 7 Toll-Like/genética , Receptor Toll-Like 9/metabolismo
9.
J Autoimmun ; 63: 31-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162758

RESUMO

The inhibitory IgG Fc receptor (FcγRIIB) deficiency and 129 strain-derived signaling lymphocyte activation molecules (129-SLAMs) are proposed to contribute to the lupus phenotype in FcγRIIB-deficient mice generated using 129 ES cells and backcrossed to C57BL/6 mice (B6.129.RIIBKO). In this study, we examine the individual contributions and the cellular mechanisms by which FcγRIIB deficiency and 129-derived SLAM family genes promote dysregulated spontaneous germinal center (Spt-GC) B cell and follicular helper T cell (Tfh) responses in B6.129.RIIBKO mice. We find that B6 mice congenic for the 129-derived SLAM locus (B6.129-SLAM) and B6 mice deficient in FcγRIIB (B6.RIIBKO) have increased Spt-GC B cell responses compared to B6 controls but significantly lower than B6.129.RIIBKO mice. These data indicate that both FcγRIIB deficiency and 129-SLAMs contribute to elevated Spt-GC B cell responses in B6.129.RIIBKO mice. However, only 129-SLAMs contribute significantly to augmented Tfh responses in B6.129.RIIBKO mice, and do so by a combination of T cell-dependent effects and enhanced B cell and DC-dependent antigen presentation to T cells. Elevated Spt-GC B cell responses in mice with FcγRIIB deficiency and polymorphic 129-SLAMs were associated with elevated metabolic activity, improved GC B cell survival and increased differentiation of naïve B cells into GC B cell phenotype. Our data suggest that the interplay between 129-SLAM expression on B cells, T cells and DCs is central to the alteration of the GC tolerance checkpoint, and that deficiency of FcγRIIB on B cells is necessary to augment Spt-GC responses, pathogenic autoantibodies, and lupus disease.


Assuntos
Antígenos CD/metabolismo , Autoimunidade , Centro Germinativo , Receptores de Superfície Celular/metabolismo , Receptores de IgG/deficiência , Animais , Autoimunidade/fisiologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Tolerância Imunológica , Camundongos , Camundongos da Linhagem 129 , Receptores de IgG/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Linfócitos T Auxiliares-Indutores/imunologia
10.
J Immunol ; 190(4): 1433-46, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23319738

RESUMO

Mer receptor tyrosine kinase is a member of the Tyro-3/Axl/Mer (TAM) subfamily of receptor tyrosine kinases, and its expression on phagocytes facilitates their clearance of apoptotic cells (ACs). Mer expression in germinal centers (GCs) occurs predominantly on tingible body macrophages. B and T cells do not express Mer. In this study, we show that Mer deficiency ((Mer(-/-)) resulted in the long-term accumulation of ACs primarily in GCs and not in the T cell zone, marginal zone, or red pulp areas of the spleen. AC accumulation in GCs led to augmented Ab-forming cell, GC, and IgG2 Ab responses in Mer(-/-) mice, which were sustained for at least 80 d. Enhanced responses in Mer(-/-) mice were due to increased activation and proliferation of B cells and CD4(+) Th cells, including follicular helper T cells, which resulted in high titers of anti-nuclear Abs in Mer(-/-) mice compared with wild-type controls. Secondary IgG-producing Ab-forming cell, total IgG, and IgG2 Ab responses were also increased in Mer(-/-) mice. Finally, compared with wild-type controls, Mer(-/-) mice had increased percentage of IFN-γ-producing CD4(+) Th cells and elevated levels of Th1 (i.e., IL-2 and IFN-γ) and proinflammatory (i.e., TNF and IL-6) cytokines, consistent with elevated levels of Th1-biased IgG2 Abs in Mer(-/-) mice. Together, our results demonstrate that Mer deficiency induces prolonged accumulation of ACs in GCs, resulting in dysregulation of GC B cell and CD4(+) Th cell responses and Th1 cytokine production, leading to alteration of B cell tolerance and the development of autoantibodies.


Assuntos
Apoptose/imunologia , Autoanticorpos/biossíntese , Subpopulações de Linfócitos B/imunologia , Agregação Celular/imunologia , Centro Germinativo/imunologia , Proteínas Proto-Oncogênicas/deficiência , Receptores Proteína Tirosina Quinases/deficiência , Linfócitos T Auxiliares-Indutores/imunologia , Regulação para Cima/imunologia , Animais , Apoptose/genética , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/patologia , Agregação Celular/genética , Centro Germinativo/citologia , Centro Germinativo/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/fisiologia , Baço/citologia , Baço/imunologia , Baço/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/patologia , Fatores de Tempo , Regulação para Cima/genética , c-Mer Tirosina Quinase
11.
Sci Immunol ; 9(94): eadi1023, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608038

RESUMO

The development of dendritic cells (DCs), including antigen-presenting conventional DCs (cDCs) and cytokine-producing plasmacytoid DCs (pDCs), is controlled by the growth factor Flt3 ligand (Flt3L) and its receptor Flt3. We genetically dissected Flt3L-driven DC differentiation using CRISPR-Cas9-based screening. Genome-wide screening identified multiple regulators of DC differentiation including subunits of TSC and GATOR1 complexes, which restricted progenitor growth but enabled DC differentiation by inhibiting mTOR signaling. An orthogonal screen identified the transcriptional repressor Trim33 (TIF-1γ) as a regulator of DC differentiation. Conditional targeting in vivo revealed an essential role of Trim33 in the development of all DCs, but not of monocytes or granulocytes. In particular, deletion of Trim33 caused rapid loss of DC progenitors, pDCs, and the cross-presenting cDC1 subset. Trim33-deficient Flt3+ progenitors up-regulated pro-inflammatory and macrophage-specific genes but failed to induce the DC differentiation program. Collectively, these data elucidate mechanisms that control Flt3L-driven differentiation of the entire DC lineage and identify Trim33 as its essential regulator.


Assuntos
Coreia , Diferenciação Celular , Citocinas , Células Dendríticas
12.
J Exp Med ; 220(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36928522

RESUMO

Extracellular DNase DNASE1L3 maintains tolerance to self-DNA in humans and mice, whereas the role of its homolog DNASE1 remains controversial, and the overall function of secreted DNases in immunity is unclear. We report that deletion of murine DNASE1 neither caused autoreactivity in isolation nor exacerbated lupus-like disease in DNASE1L3-deficient mice. However, combined deficiency of DNASE1 and DNASE1L3 rendered mice susceptible to bloodstream infection with Staphylococcus aureus. DNASE1/DNASE1L3 double-deficient mice mounted a normal innate response to S. aureus and did not accumulate neutrophil extracellular traps (NETs). However, their kidneys manifested severe pathology, increased bacterial burden, and biofilm-like bacterial lesions that contained bacterial DNA and excluded neutrophils. Furthermore, systemic administration of recombinant DNASE1 protein during S. aureus infection rescued the mortality of DNase-deficient mice and ameliorated the disease in wild-type mice. Thus, DNASE1 and DNASE1L3 jointly facilitate the control of bacterial infection by digesting extracellular microbial DNA in biofilms, suggesting the original evolutionary function of secreted DNases as antimicrobial agents.


Assuntos
Biofilmes , Endodesoxirribonucleases , Sepse , Infecções Estafilocócicas , Animais , Camundongos , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Desoxirribonucleases/metabolismo , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Armadilhas Extracelulares/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/metabolismo
13.
Hum Reprod ; 27(4): 1005-15, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22313865

RESUMO

BACKGROUND: The progesterone-regulated glycoprotein glycodelin-A (GdA), secreted by the decidualized endometrium at high concentrations in primates, inhibits the maternal immune response against fetal antigens and thereby contributes to the tolerance of the semi-allogenic fetus during a normal pregnancy. Our earlier studies demonstrated the ability of GdA to induce an intrinsic apoptotic cascade in CD4(+) T-lymphocytes and suppress the cytolytic effector function of CD8(+) T-lymphocytes. In this report, we investigated further into the mechanism of action of GdA controlling perforin and granzyme B expression in CD8(+) T-lymphocytes and the mechanism of action of GdA leading to lymphocyte death. METHODS: Flow cytometry analysis was performed to check for the surface expression of interleukin-2 receptor α (IL-2Rα) and intracellular eomesodermin (Eomes) in activated T-lymphocytes, whereas quantitative RT-PCR analysis was used to find out their mRNA profile upon GdA treatment. Western analysis was carried out to confirm the protein level of Bax and Bcl-2. RESULTS: GdA reduces the surface expression of the high-affinity IL-2R complex by down-regulating the synthesis of IL-2Rα (CD25). This disturbs the optimal IL-2 signalling and decreases the Eomes expression, which along with IL-2 directly regulates perforin and granzymes expression. Consequently, the CD8(+) T-lymphocytes undergo growth arrest and are unable to mature into competent cytotoxic T-lymphocytes. In the CD4(+) T-lymphocytes, growth factor IL-2 deprivation leads to proliferation inhibition, decreased Bcl-2/enhanced Bax expression, culminating in mitochondrial stress and cell death. CONCLUSIONS: GdA spurs cell cycle arrest, loss of effector functions and apoptosis in different T-cell subsets by making T-lymphocytes unable to respond to IL-2.


Assuntos
Apoptose , Glicoproteínas/fisiologia , Interleucina-2/metabolismo , Proteínas da Gravidez/fisiologia , Receptores de Interleucina-2/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Regulação para Baixo , Citometria de Fluxo , Glicodelina , Glicoproteínas/metabolismo , Proteínas da Gravidez/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Proteína X Associada a bcl-2/metabolismo
15.
Front Immunol ; 12: 629922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717156

RESUMO

Detection of microbial nucleic acids by the innate immune system is mediated by numerous intracellular nucleic acids sensors. Upon the detection of nucleic acids these sensors induce the production of inflammatory cytokines, and thus play a crucial role in the activation of anti-microbial immunity. In addition to microbial genetic material, nucleic acid sensors can also recognize self-nucleic acids exposed extracellularly during turn-over of cells, inefficient efferocytosis, or intracellularly upon mislocalization. Safeguard mechanisms have evolved to dispose of such self-nucleic acids to impede the development of autoinflammatory and autoimmune responses. These safeguard mechanisms involve nucleases that are either specific to DNA (DNases) or RNA (RNases) as well as nucleic acid editing enzymes, whose biochemical properties, expression profiles, functions and mechanisms of action will be detailed in this review. Fully elucidating the role of these enzymes in degrading and/or processing of self-nucleic acids to thwart their immunostimulatory potential is of utmost importance to develop novel therapeutic strategies for patients affected by inflammatory and autoimmune diseases.


Assuntos
Autoimunidade/imunologia , Autoimunidade/fisiologia , Imunidade Inata/imunologia , Imunidade Inata/fisiologia , Ácidos Nucleicos/imunologia , Animais , Doenças Autoimunes , Desoxirribonucleases/imunologia , Humanos , Ribonucleases/imunologia
16.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33783474

RESUMO

Antibodies to double-stranded DNA (dsDNA) are prevalent in systemic lupus erythematosus (SLE), particularly in patients with lupus nephritis, yet the nature and regulation of antigenic cell-free DNA (cfDNA) are poorly understood. Null mutations in the secreted DNase DNASE1L3 cause human monogenic SLE with anti-dsDNA autoreactivity. We report that >50% of sporadic SLE patients with nephritis manifested reduced DNASE1L3 activity in circulation, which was associated with neutralizing autoantibodies to DNASE1L3. These patients had normal total plasma cfDNA levels but showed accumulation of cfDNA in circulating microparticles. Microparticle-associated cfDNA contained a higher fraction of longer polynucleosomal cfDNA fragments, which bound autoantibodies with higher affinity than mononucleosomal fragments. Autoantibodies to DNASE1L3-sensitive antigens on microparticles were prevalent in SLE nephritis patients and correlated with the accumulation of cfDNA in microparticles and with disease severity. DNASE1L3-sensitive antigens included DNA-associated proteins such as HMGB1. Our results reveal autoantibody-mediated impairment of DNASE1L3 activity as a common nongenetic mechanism facilitating anti-dsDNA autoreactivity in patients with severe sporadic SLE.


Assuntos
Anticorpos Antinucleares/imunologia , Autoanticorpos/imunologia , DNA/imunologia , Endodesoxirribonucleases/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/imunologia , Adulto , Animais , Anticorpos Antinucleares/sangue , Autoanticorpos/sangue , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/metabolismo , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/imunologia , Criança , Endodesoxirribonucleases/sangue , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Feminino , Células HEK293 , Proteína HMGB1/imunologia , Proteína HMGB1/metabolismo , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Nefrite Lúpica/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Índice de Gravidade de Doença
17.
Front Immunol ; 11: 1632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849556

RESUMO

IL-10 producing B cells (B10 cells) play an important immunoregulatory role in various autoimmune and infection conditions. However, the factors that regulate their development and maintenance are incompletely understood. Recently, we and others have established a requirement for TLR7 in promoting autoimmune antibody forming cell (AFC) and germinal center (GC) responses. Here we report an important additional role of TLR7 in the negative regulation of B10 cell development. TLR7 overexpression or overstimulation promoted the reduction of B10 cells whereas TLR7 deficiency rescued these cells in both non-autoimmune and autoimmune-prone mice. TLR7 expression was further inversely correlated with B cell-dependent IL-10 production and its inhibition of CD4 T cell proliferation and IFNγ production in an in vitro B cell and T cell co-culture system. Further, B10 cells displayed elevated TLR7, IFNγR, and STAT1 expression compared to non-B10 cells. Interestingly, deficiency of IFNγR in TLR7 overexpressing lupus-prone mice rescued B10 cells from TLR7-mediated reduction. Finally, B cell intrinsic deletion of IFNγR was sufficient to restore B10 cells in the spleens of TLR7-promoted autoimmune mouse model. In conclusion, our findings demonstrate a novel role for the IFNγR-STAT1 pathway in TLR7-mediated negative regulation of B10 cell development.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Interferon gama/metabolismo , Interleucina-10/biossíntese , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Autoimunidade , Subpopulações de Linfócitos B/imunologia , Biomarcadores , Modelos Animais de Doenças , Imunomodulação/genética , Imunofenotipagem , Interferon gama/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Transgênicos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
18.
Sci Immunol ; 5(46)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276965

RESUMO

Intestinal mononuclear phagocytes (MPs) are composed of heterogeneous dendritic cell (DC) and macrophage subsets necessary for the initiation of immune response and control of inflammation. Although MPs in the normal intestine have been extensively studied, the heterogeneity and function of inflammatory MPs remain poorly defined. We performed phenotypical, transcriptional, and functional analyses of inflammatory MPs in infectious Salmonella colitis and identified CX3CR1+ MPs as the most prevalent inflammatory cell type. CX3CR1+ MPs were further divided into three distinct populations, namely, Nos2 +CX3CR1lo, Ccr7 +CX3CR1int (lymph migratory), and Cxcl13 +CX3CR1hi (mucosa resident), all of which were transcriptionally aligned with macrophages and derived from monocytes. In follow-up experiments in vivo, intestinal CX3CR1+ macrophages were superior to conventional DC1 (cDC1) and cDC2 in inducing Salmonella-specific mucosal IgA. We next examined spatial organization of the immune response induced by CX3CR1+ macrophage subsets and identified mucosa-resident Cxcl13 +CX3CR1hi macrophages as the antigen-presenting cells responsible for recruitment and activation of CD4+ T and B cells to the sites of Salmonella invasion, followed by tertiary lymphoid structure formation and the local pathogen-specific IgA response. Using mice we developed with a floxed Ccr7 allele, we showed that this local IgA response developed independently of migration of the Ccr7 +CX3CR1int population to the mesenteric lymph nodes and contributed to the total mucosal IgA response to infection. The differential activity of intestinal macrophage subsets in promoting mucosal IgA responses should be considered in the development of vaccines to prevent Salmonella infection and in the design of anti-inflammatory therapies aimed at modulating macrophage function in inflammatory bowel disease.


Assuntos
Receptor 1 de Quimiocina CX3C/imunologia , Imunoglobulina A/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Estruturas Linfoides Terciárias/imunologia , Animais , Feminino , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Salmonella enterica/imunologia , Estreptomicina
19.
Front Immunol ; 10: 1601, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354738

RESUMO

Self-reactive B cells generated through V(D)J recombination in the bone marrow or through accrual of random mutations in secondary lymphoid tissues are mostly purged or edited to prevent autoimmunity. Yet, 10-20% of all mature naïve B cells in healthy individuals have self-reactive B cell receptors (BCRs). In patients with serologically active systemic lupus erythematosus (SLE) the percentage increases up to 50%, with significant self-DNA reactivity that correlates with disease severity. Endogenous or self-DNA has emerged as a potent antigen in several autoimmune disorders, particularly in SLE. However, the mechanism(s) regulating or preventing anti-DNA antibody production remain elusive. It is likely that in healthy subjects, DNA-reactive B cells avoid activation due to the unavailability of endogenous DNA, which is efficiently degraded through efferocytosis and various DNA-processing proteins. Genetic defects, physiological, and/or pathological conditions can override these protective checkpoints, leading to autoimmunity. Plausibly, increased availability of immunogenic self-DNA may be the key initiating event in the loss of tolerance of otherwise quiescent DNA-reactive B cells. Indeed, mutations impairing apoptotic cell clearance pathways and nucleic acid metabolism-associated genes like DNases, RNases, and their sensors are known to cause autoimmune disorders including SLE. Here we review the literature supporting the idea that increased availability of DNA as an immunogen or adjuvant, or both, may cause the production of pathogenic anti-DNA antibodies and subsequent manifestations of clinical disease such as SLE. We discuss the main cellular players involved in anti-DNA responses; the physical forms and sources of immunogenic DNA in autoimmunity; the DNA-protein complexes that render DNA immunogenic; the regulation of DNA availability by intracellular and extracellular DNases and the autoimmune pathologies associated with their dysfunction; the cytosolic and endosomal sensors of immunogenic DNA; and the cytokines such as interferons that drive auto-inflammatory and autoimmune pathways leading to clinical disease. We propose that prevention of DNA availability by aiding extracellular DNase activity could be a viable therapeutic modality in controlling SLE.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Linfócitos B/imunologia , DNA/imunologia , Lúpus Eritematoso Sistêmico/etiologia , Animais , Anticorpos Antinucleares/imunologia , Apoptose , Autoimunidade , Linfócitos B/metabolismo , Biomarcadores , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Suscetibilidade a Doenças , Armadilhas Extracelulares/imunologia , Humanos , Imunidade Inata , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/metabolismo , Lisossomos/imunologia , Lisossomos/metabolismo , Mutação , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores Toll-Like/metabolismo
20.
Autoimmunity ; 52(2): 57-68, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31006265

RESUMO

Systemic lupus erythematosus (SLE) is a debilitating multi-factorial immunological disorder characterized by increased inflammation and development of anti-nuclear autoantibodies. Selenium (Se) is an essential trace element with beneficial anti-cancer and anti-inflammatory immunological functions. In our previous proteomics study, analysis of Se-responsive markers in the circulation of Se-supplemented healthy men showed a significant increase in complement proteins. Additionally, Se supplementation prolonged the life span of lupus prone NZB/NZW-F1 mice. To better understand the protective immunological role of Se in SLE pathogenesis, we have investigated the impact of Se on B cells and macrophages using in vitro Se supplementation assays and the B6.Sle1b mouse model of lupus with an oral Se or placebo supplementation regimen. Analysis of Se-treated B6.Sle1b mice showed reduced splenomegaly and splenic cellularity compared to untreated B6. Sle1b mice. A significant reduction in total B cells and notably germinal center (GC) B cell numbers was observed. However, other cell types including T cells, Tregs, DCs and pDCs were unaffected. Consistent with reduced GC B cells there was a significant reduction in autoantibodies to dsDNA and SmRNP of the IgG2b and IgG2c subclass upon Se supplementation. We found that increased Se availability leads to impaired differentiation and maturation of macrophages from mouse bone marrow derived progenitors in vitro. Additionally, Se treatment during in vitro activation of B cells with anti-CD40L and LPS inhibited optimal B cell activation. Overall our data indicate that Se supplementation inhibits activation, differentiation and maturation of B cells and macrophages. Its specific inhibitory effect on B cell activation and GC B cell differentiation could be explored as a potential therapeutic supplement for SLE patients.


Assuntos
Anticorpos Antinucleares/imunologia , Linfócitos B , Imunoglobulina G/imunologia , Lúpus Eritematoso Sistêmico , Macrófagos , Selênio/farmacologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Modelos Animais de Doenças , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA