RESUMO
Nanoparticles are promising mediators to enable nasal systemic and brain delivery of active compounds. However, the possibility of reaching therapeutically relevant levels of exogenous molecules in the body is strongly reliant on the ability of the nanoparticles to overcome biological barriers. In this work, three paradigmatic nanoformulations vehiculating the poorly soluble model drug simvastatin were addressed: (i) hybrid lecithin/chitosan nanoparticles (LCNs), (ii) polymeric poly-ε-caprolactone nanocapsules stabilized with the nonionic surfactant polysorbate 80 (PCL_P80), and (iii) polymeric poly-ε-caprolactone nanocapsules stabilized with a polysaccharide-based surfactant, i.e., sodium caproyl hyaluronate (PCL_SCH). The three nanosystems were investigated for their physicochemical and structural properties and for their impact on the biopharmaceutical aspects critical for nasal and nose-to-brain delivery: biocompatibility, drug release, mucoadhesion, and permeation across the nasal mucosa. All three nanoformulations were highly reproducible, with small particle size (â¼200 nm), narrow size distribution (polydispersity index (PI) < 0.2), and high drug encapsulation efficiency (>97%). Nanoparticle composition, surface charge, and internal structure (multilayered, core-shell or raspberry-like, as assessed by small-angle neutron scattering, SANS) were demonstrated to have an impact on both the drug-release profile and, strikingly, its behavior at the biological interface. The interaction with the mucus layer and the kinetics and extent of transport of the drug across the excised animal nasal epithelium were modulated by nanoparticle structure and surface. In fact, all of the produced nanoparticles improved simvastatin transport across the epithelial barrier of the nasal cavity as compared to a traditional formulation. Interestingly, however, the permeation enhancement was achieved via two distinct pathways: (a) enhanced mucoadhesion for hybrid LCN accompanied by fast mucosal permeation of the model drug, or (b) mucopenetration and an improved uptake and potential transport of whole PCL_P80 and PCL_SCH nanocapsules with delayed boost of permeation across the nasal mucosa. The correlation between nanoparticle structure and its biopharmaceutical properties appears to be a pivotal point for the development of novel platforms suitable for systemic and brain delivery of pharmaceutical compounds via intranasal administration.
Assuntos
Administração Intranasal/métodos , Materiais Biocompatíveis/química , Nanocápsulas/química , Sistemas de Liberação de Fármacos por Nanopartículas/química , Mucosa Nasal/efeitos dos fármacos , Sinvastatina/administração & dosagem , Sinvastatina/química , Animais , Transporte Biológico , Caproatos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Liberação Controlada de Fármacos , Humanos , Ácido Hialurônico/análogos & derivados , Ácido Hialurônico/química , Lactonas/química , Lecitinas/química , Mucosa Nasal/metabolismo , Tamanho da Partícula , Polissorbatos/química , Coelhos , Solubilidade , Tensoativos/química , SuínosRESUMO
Tamoxifen citrate (TMC), a non-steroidal antiestrogen drug used for the treatment of breast cancer, was loaded in a block copolymer of maltoheptaose-b-polystyrene (MH-b-PS) nanoparticles, a potential drug delivery system to optimize oral chemotherapy. The nanoparticles were obtained from self-assembly of MH-b-PS using the standard and reverse nanoprecipitation methods. The MH-b-PS@TMC nanoparticles were characterized by their physicochemical properties, morphology, drug loading and encapsulation efficiency, and release kinetic profile in simulated intestinal fluid (pH 7.4). Finally, their cytotoxicity towards the human breast carcinoma MCF-7 cell line was assessed. The standard nanoprecipitation method proved to be more efficient than reverse nanoprecipitation to produce nanoparticles with small size and narrow particle size distribution. Moreover, tamoxifen-loaded nanoparticles displayed spherical morphology, a positive zeta potential and high drug content (238.6 ± 6.8 µg mL-1) and encapsulation efficiency (80.9 ± 0.4 %). In vitro drug release kinetics showed a burst release at early time points, followed by a sustained release profile controlled by diffusion. MH-b-PS@TMC nanoparticles showed higher cytotoxicity towards MCF-7 cells than free tamoxifen citrate, confirming their effectiveness as a delivery system for administration of lipophilic anticancer drugs.
Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Glucanos , Nanopartículas/química , Poliestirenos , Tamoxifeno/administração & dosagem , Neoplasias da Mama , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Composição de Medicamentos , Liberação Controlada de Fármacos , Feminino , Glucanos/química , Humanos , Cinética , Modelos Teóricos , Estrutura Molecular , Tamanho da Partícula , Poliestirenos/química , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Tamoxifeno/químicaRESUMO
Colistimethate sodium (CMS) for treatment of lung infections in cystic fibrosis patient was transformed into a dry powder for inhalation by spray drying. Design of Experiment was applied for understanding the role of the spray-drying process parameters on the critical quality attributes of the CMS spray-dried (SD) powders and agglomerates thereof. Eleven experimental SD microparticle powders were constructed under different process conditions according to a central composite design. The SD microparticles were then agglomerated in soft pellets. Eleven physico-chemical characteristics of SD CMS microparticle powders or agglomerates thereof were selected as critical quality attributes. The yield of SD process was higher than 75%. The emitted fraction of agglomerates from RS01 inhaler was 75-84%, and the fine particle fraction (particles <5 µm) was between 58% and 62%. The quality attributes of CMS SD powders and respective agglomerates that were significantly influenced by spray-drying process parameters were residual solvent and drug content of the SD microparticles as well as bulk density and respirable dose of the agglomerates. These attributes were also affected by the combination of the process variables. The air aspiration rate was found as the most positively influential on drug and solvent content and respirable dose. The residual solvent content significantly influenced the powder bulk properties and aerodynamic behavior of the agglomerates, i.e. quality attributes that govern drug metering in the device and the particles lungs deposition. Agglomerates of CMS SD microparticles, in combination with RS01 DPI, showed satisfactory results in terms of dose emitted and fine particle fraction.
Assuntos
Colistina/análogos & derivados , Fibrose Cística/tratamento farmacológico , Infecções/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pós/química , Pós/farmacologia , Administração por Inalação , Aerossóis/química , Aerossóis/farmacologia , Colistina/química , Composição de Medicamentos/métodos , Inaladores de Pó Seco , Humanos , Tamanho da Partícula , Solventes/químicaRESUMO
Aims: Lipid-core nanocapsules (LNCs) loaded with simvastatin (SV, SV-LNC) or lovastatin (LV, LV-LNC) were formulated for pulmonary administration. Methods: The LNC suspensions were characterized physicochemically, their stability was evaluated, and drug delivery by the pulmonary route was tested in vitro. Results: The loaded LNCs had a particle size close to 200 nm, a low polydispersity index, and a zeta potential around -20 mV. The encapsulation efficiency was high for SV (99.21 ± 0.7%) but low for LV (20.34 ± 1.2%). SV release from nanocapsules was slower than it was from SV in solution, with a monoexponential release profile, and the drug emitted and aerosol output rate was higher for SV-LNCs (1.58 µg/s) than for SV in suspension (0.54 µg/s). Conclusions: SV-LNCs had a median aerodynamic diameter of 3.51 µm and a highly respirable fraction (61.9%), indicating that nanoparticles are a suitable system for efficient delivery of simvastatin to the lung.
Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Lovastatina/administração & dosagem , Nanocápsulas/química , Sinvastatina/administração & dosagem , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Lipídeos/química , Lovastatina/química , Nebulizadores e Vaporizadores , Tamanho da Partícula , Sinvastatina/químicaRESUMO
Glioblastoma (GBM) is the most lethal form of brain tumor, being characterized by the rapid growth and invasion of the surrounding tissue. The current standard treatment for glioblastoma is surgery, followed by radiotherapy and concurrent chemotherapy, typically with temozolomide. Although extensive research has been carried out over the past years to develop a more effective therapeutic strategy for the treatment of GBM, efforts have not provided major improvements in terms of the overall survival of patients. Consequently, new therapeutic approaches are urgently needed. Overcoming the blood-brain barrier (BBB) is a major challenge in the development of therapies for central nervous system (CNS) disorders. In this context, the intranasal route of drug administration has been proposed as a non-invasive alternative route for directly targeting the CNS. This route of drug administration bypasses the BBB and reduces the systemic side effects. Recently, several formulations have been developed for further enhancing nose-to-brain transport, mainly with the use of nano-sized and nanostructured drug delivery systems. The focus of this review is to provide an overview of the strategies that have been developed for delivering anticancer compounds for the treatment of GBM while using nasal administration. In particular, the specific properties of nanomedicines proposed for nose-to-brain delivery will be critically evaluated. The preclinical and clinical data considered supporting the idea that nasal delivery of anticancer drugs may represent a breakthrough advancement in the fight against GBM.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Mucosa Nasal/metabolismo , Administração Intranasal , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , HumanosRESUMO
The aim of this work was to develop an innovative microemulsion with gel-like properties for the cutaneous delivery of imiquimod, an immunostimulant drug employed for the treatment of cutaneous infections and neoplastic conditions. A pseudoternary phase diagram was built using a 1/1 TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate)/Transcutol mixture as surfactant system, and oleic acid as oil phase. Eight microemulsions-selected from the 1.25/8.75 oil/surfactants ratio, along the water dilution line (from 20 to 56% w/w)-were characterized in terms of rheological behavior, optical properties via polarized microscopy, and supramolecular structure using X-ray scattering. Then, these formulations were loaded with imiquimod and the uptake and distribution into the skin was evaluated on full-thickness porcine skin. X-ray scattering experiments revealed the presence of disconnected drops in the case of microemulsion with 20% water content. Diluting the system up to 48% water content, the structure turned into an interconnected lamellar microemulsion, reaching a proper disconnected lamellar structure for the highest water percentages (52-56%). Upon water addition, also the rheological properties changed from nearly Newtonian fluids to gel-like structures, displaying the maximum of viscosity for the 48% water content. Skin uptake experiments demonstrated that formulation viscosity, drug loading, and surfactant concentration did not play an important role on imiquimod uptake into the skin, while the skin penetration was related instead to the microemulsion mesostructure. In fact, drug uptake became enhanced by locally lamellar interconnected structures, while it was reduced in the presence of disconnected structures, either drops or proper lamellae. Finally, the data demonstrated that mesostructure also affects the drug distribution between the epidermis and dermis. In particular, a significantly higher dermal accumulation was found when disconnected lamellar structures are present, suggesting the possibility of tuning both drug delivery and localization into the skin by modifying microemulsions composition.
Assuntos
Adjuvantes Imunológicos/farmacologia , Aminoquinolinas/farmacologia , Absorção Cutânea , Pele/metabolismo , Vitamina E/química , Administração Cutânea , Animais , Portadores de Fármacos/química , Emulsões/química , Etilenoglicóis/química , Imiquimode , Ácido Oleico/química , Espalhamento de Radiação , Suínos , Distribuição Tecidual , ViscosidadeRESUMO
OBJECTIVE: The aim of this work was to develop an amorphous solid dispersions/solutions (ASD) of a poorly soluble drug, budesonide (BUD) with a novel polymer Soluplus® (BASF, Germany) using a freeze-drying technique, in order to improve dissolution and absorption through the nasal route. SIGNIFICANCE: The small volume of fluid present in the nasal cavity limits the absorption of a poorly soluble drug. Budesonide is a corticosteroid, practically insoluble and normally administered as a suspension-based nasal spray. METHODS: The formulation was prepared through freeze-drying of polymer-drug solution. The formulation was assessed for its physicochemical (specific surface area, calorimetric analysis and X-ray powder diffraction), release properties and aerodynamic properties as well as transport in vitro using RPMI 2650 nasal cells, in order to elucidate the efficacy of the Soluplus-BUD formulation. RESULTS: The freeze-dried Soluplus-BUD formulation (LYO) showed a porous structure with a specific surface area of 1.4334 ± 0.0178 m2/g. The calorimetric analysis confirmed an interaction between BUD and Soluplus and X-ray powder diffraction the amorphous status of the drug. The freeze-dried formulation (LYO) showed faster release compared to both water-based suspension and dry powder commercial products. Furthermore, a LYO formulation, bulked with calcium carbonate (LYO-Ca), showed suitable aerodynamic characteristics for nasal drug delivery. The permeation across RPMI 2650 nasal cell model was higher compared to a commercial water-based BUD suspension. CONCLUSIONS: Soluplus has been shown to be a promising polymer for the formulation of BUD amorphous solid suspension/solution. This opens up opportunities to develop new formulations of poorly soluble drug for nasal delivery.
Assuntos
Aerossóis/administração & dosagem , Budesonida/administração & dosagem , Portadores de Fármacos/administração & dosagem , Polietilenoglicóis/administração & dosagem , Polivinil/administração & dosagem , Aerossóis/química , Budesonida/química , Química Farmacêutica , Dessecação , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liofilização , Polietilenoglicóis/química , Polivinil/química , Porosidade , Pós/administração & dosagem , Difração de Raios XRESUMO
PURPOSE: To discuss the challenges and opportunities for dry powder nasal medications and to put this in to perspective by evaluating and characterizing the performance of the Teijin beclomethasone dipropionate (BDP) dry powder nasal inhaler; providing a baseline for future nasal products development. METHODS: The aerosol properties of the formulation and product performance of Teijin powder intranasal spray were assessed, with a particular focus on particle size distribution (laser diffraction), powder formulation composition (confocal Raman microscope) and aerosol performance data (British Pharmacopeia Apparatus E cascade impactor, aerosol laser diffraction). RESULTS: Teijin Rhinocort(®) (BDP) dry powder spray formulation is a simple blend of one active ingredient, BDP with hydroxypropylcellulose (HPC) carrier particles and a smaller quantity of lubricants (stearic acid and magnesium stearate). The properties of the blend are mainly those of the carrier (Dv50 = 98 ± 1.3 µm). Almost the totality of the capsule fill weight (96.5%) was emitted with eight actuations of the device. Using the pharmacopeia suggested nasal chamber deposition apparatus attached to an Apparatus E impactor. The BDP main site of deposition was found to be in the nasal expansion chamber (90.2 ± 4.78%), while 4.64 ± 1.38% of the BDP emitted dose was deposited on Stage 1 of the Apparatus E. CONCLUSIONS: The Teijin powder nasal device is a simple and robust device to deliver pharmaceutical powder to the nasal cavity, thus highlighting the robustness of intranasal powder delivery systems. The large number of actuations needed to deliver the total dose (eight) should be taken in consideration when compared to aqueous sprays (usually two actuations), since this will impact on patient compliance and consequently therapeutic efficacy of the formulation.
Assuntos
Beclometasona/administração & dosagem , Budesonida/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Administração por Inalação , Administração Intranasal , Beclometasona/química , Budesonida/química , Inaladores de Pó Seco , HumanosRESUMO
The aim of this work was to assess in vivo the anti-inflammatory efficacy and tolerability of clobetasol propionate (CP) loaded lecithin/chitosan nanoparticles incorporated into chitosan gel for topical application (CP 0.005%). As a comparison, a commercial cream (CP 0.05% w/w), and a sodium deoxycholate gel (CP 0.05% w/w) were also evaluated. Lecithin/chitosan nanoparticles were prepared by self-assembling of the components obtained by direct injection of soybean lecithin alcoholic solution containing CP into chitosan aqueous solution. Nanoparticles obtained had a particle size around 250 nm, narrow distribution (polydispersity index below 0.2) and positive surface charge, provided by a superficial layer of the cationic polymer. The nanoparticle suspension was then loaded into a chitosan gel, to obtain a final CP concentration of 0.005%. The anti-inflammatory activity was evaluated using carrageenan-induced hind paw edema test on Wistar rats, the effect of formulations on the barrier property of the stratum corneum were determined using transepidermal water loss measurements (TEWL) and histological analysis was performed to evaluate the possible presence of morphological changes. The results obtained indicate that nanoparticle-in-gel formulation produced significantly higher edema inhibition compared to other formulations tested, although it contained ten times less CP. TEWL measurements also revealed that all formulations have no significant disturbance on the barrier function of skin. Furthermore, histological analysis of rat abdominal skin did not show morphological tissue changes nor cell infiltration signs after application of the formulations. Taken together, the present data show that the use of lecithin/chitosan nanoparticles in chitosan gel as a drug carrier significantly improves the risk-benefit ratio as compared with sodium-deoxycholate gel and commercial cream formulations of CP.
Assuntos
Anti-Inflamatórios/administração & dosagem , Clobetasol/administração & dosagem , Glucocorticoides/administração & dosagem , Nanopartículas/efeitos adversos , Pele/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Quitosana/química , Clobetasol/farmacologia , Glucocorticoides/farmacologia , Lecitinas/química , Masculino , Nanopartículas/química , Ratos , Ratos WistarRESUMO
BACKGROUND: Organic electrochemical transistors (OECTs), which are becoming more and more promising devices for applications in bioelectronics and nanomedicine, are proposed here as ideally suitable for sensing and real time monitoring of liposome-based structures. This is quite relevant since, currently, the techniques used to investigate liposomal structures, their stability in different environments as well as drug loading and delivery mechanisms, operate basically off-line and/or with pre-prepared sampling. METHODS: OECTs, based on the PEDOT:PSS conductive polymer, have been employed as sensors of liposome-based nanoparticles in electrolyte solutions to assess sensitivity and monitoring capabilities based on ion-to-electron amplified transduction. RESULTS: We demonstrate that OECTs are very efficient, reliable and sensitive devices for detecting liposome-based nanoparticles on a wide dynamic range down to 10(-5)mg/ml (with a lowest detection limit, assessed in real-time monitoring, of 10(-7)mg/ml), thus matching the needs of typical drug loading/drug delivery conditions. They are hence particularly well suited for real-time monitoring of liposomes in solution. Furthermore, OECTs are shown to sense and discriminate successive injection of different liposomes, so that they could be good candidates in quality-control assays or in the pharmaceutical industry. GENERAL SIGNIFICANCE: Drug loading and delivery by liposome-based structures is a fast growing and very promising field that will strongly benefit from real-time, highly sensitive and low cost monitoring of their dynamics in different pharma and biomedical environments, with a particular reference to the pharmaceutical and production processes, where a major issue is monitoring and measuring the formation and concentration of liposomes and the relative drug load. The demonstrated ability to sense and monitor complex bio-structures, such as liposomes, paves the way for very promising developments in biosensing and nanomedicine. This article is part of a Special Issue entitled Organic Bioelectronics-Novel Applications in Biomedicine.
Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Lipossomos/química , Microfluídica/instrumentação , Microfluídica/métodos , Transistores Eletrônicos , Nanomedicina/instrumentação , Nanomedicina/métodos , Nanopartículas/química , Polímeros/química , Poliestirenos/química , Soluções/química , Tiofenos/químicaRESUMO
Effective strategies against the spread of respiratory viruses are needed, as tragically demonstrated during the COVID-19 pandemic. Apart from vaccines, other preventive or protective measures are necessary: one promising strategy involves the nasal delivery of preventive or protective agents, targeting the site of initial infection. Harnessing the immune system's ability to produce specific antibodies, a hyperimmune serum, collected from an individual vaccinated against SARS-CoV-2, was formulated as a dry powder for nasal administration. The selection of adequate excipients and process are key to maintaining protein stability and modulating the aerodynamic properties of the powders for reaching the desired respiratory regions. To this end, a hyperimmune serum was formulated with trehalose and mannitol as bulking agents during spray drying, then the ability of the redissolved immunoglobulins to bind Spike protein was verified by ELISA; foetal bovine serum was formulated in the same conditions as a reference. Moreover, a seroneutralization assay against SARS-CoV-2 pseudoviruses generated from different variants of concern was performed. The neutralizing ability of the serum was slightly reduced with respect to the starting serum when trehalose was used as a bulking agent. The powders were loaded in hypromellose capsules and aerosolized employing a nasal insufflator in an in vitro model of the nasal cavity connected to a Next Generation Impactor. The analysis of the powder distribution confirmed that all powders were inhalable and could target, at the same time, the upper and the lower airways. This is a preliminary proof-of-concept that this approach can constitute an effective strategy to provide broad coverage and protection against SARS-CoV-2, and in general against viruses affecting the airway. According to blood availability from donors, pools of hyperimmune sera could be rapidly formulated and administered, providing a simultaneous and timely neutralization of emerging viral variants.
RESUMO
INTRODUCTION: Recent discoveries in the field of lung microbiota have enabled the investigation of new therapeutic interventions involving the use of inhaled probiotics. AREAS COVERED: This review provides an overview of what is known about the correlation between airway dysbiosis and the development of local and systemic diseases, and how this knowledge can be exploited for therapeutic interventions. In particular, the review focused on attempts to formulate probiotics that can be deposited directly on the airways. EXPERT OPINION: Despite considerable progress since the emergence of respiratory microbiota restoration as a new research field, numerous clinical implications and benefits remain to be determined. In the case of local diseases, once the pathophysiology is understood, manipulating the lung microbiota through probiotic administration is an approach that can be exploited. In contrast, the effect of pulmonary dysbiosis on systemic diseases remains to be clarified; however, this approach could represent a turning point in their treatment.
Assuntos
Disbiose , Microbiota , Probióticos , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Humanos , Animais , Administração por Inalação , Sistema Respiratório/microbiologia , Sistemas de Liberação de Medicamentos , Pulmão/microbiologia , Pulmão/metabolismo , Pneumopatias/microbiologia , Pneumopatias/tratamento farmacológicoRESUMO
The deposition, residence time, and dissolution profile of nasal suspensions containing corticosteroids play a key role in their in vivo efficacy after administration. However, the conventional methods available to characterize nasal products appear to be unsuitable to exhaustively cover these aspects. The work aims to investigate technological aspects of Ryaltris (mometasone furoate and olopatadine hydrochloride nasal spray) compared to other commercial anti-allergic nasal products, namely, Dymista (azelastine hydrochloride and fluticasone propionate), Nasonex (mometasone furoate), and Avamys (fluticasone furoate). Innovative characterization methods were combined with more traditional approaches to investigate the anti-allergic nasal sprays. These methods applied together allowed to differentiate between the different products and provided a clear picture of the nasal product behavior in terms of drug dissolution and deposition. In particular, the dissolution tests were performed exploiting the Respicell® apparatus, an innovative technique that allows for the investigation of inhalation products. Then, formulation viscosities were considered along with a formulation flow test on an inclined plane. Finally, the intranasal deposition profile of the commercial formulations was determined using a silicon nasal cast. The results highlight in vitro significant differences in terms of viscosity as well as dissolution rate of the nasal products, with Ryaltris showing a higher viscosity and lower flow compared to other products, which, along with a corticosteroid faster dissolution rate than Dymista, suggest a potential advantage in terms of clinical behavior.
RESUMO
OBJECTIVES: The aim of the project was to develop and characterise powders containing a probiotic (Lactiplantibacillus plantarum [Lpb. plantarum], Lacticaseibacillus rhamnosus, or Lactobacillus acidophilus) to be administered to the lung for the containment of pathogen growth in patients with lung infections. METHODS: The optimised spray drying process for the powder manufacturing was able to preserve viability of the bacteria, which decreased of only one log unit and was maintained up to 30 days. RESULTS: Probiotic powders showed a high respirability (42%-50% of particles had a size < 5 µm) suitable for lung deposition and were proven safe on A549 and Calu-3 cells up to a concentration of 107 colony-forming units/mL. The Lpb. plantarum adhesion to both cell lines tested was at least 10%. Surprisingly, Lpb. plantarum powder was bactericidal at a concentration of 106 colony-forming units/mL on P. aeruginosa, whereas the other two strains were bacteriostatic. CONCLUSION: This work represents a promising starting point to consider a probiotic inhalation powder a value in keeping the growth of pathogenic microflora in check during the antibiotic inhalation therapy suspension in cystic fibrosis treatment regimen. This approach could also be advantageous for interfering competitively with pathogenic bacteria and promoting the restoration of the healthy microbiota.
Assuntos
Lactobacillales , Probióticos , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa , Pós , Antibacterianos/farmacologiaRESUMO
The upper airways represent the point of entrance from where Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection spreads to the lungs. In the present work, α-tocopheryl-polyethylene-glycol succinate (TPGS) micelles loaded with cyclosporine A (CSA) were developed for nasal administration to prevent or treat the viral infection in the very first phases. The behavior of the micelles in presence of simulated nasal mucus was investigated in terms of stability and mucopenetration rate, evidencing long-term stability and fast diffusion across the glycoproteins matrix. Moreover, the spray characteristics of the micellar formulation and deposition profile in a silicon nasal model were studied using three nasal spray devices. Results allowed to identify the nasal spray pump (BiVax, Aptar) able to provide the wider and uniform deposition of the nasal cavity. The cyclosporine A micelles antiviral activity against SARS-CoV-2 was tested on the Omicron BA.1 variant using Vero E6 cells with protocols simulating treatment before, during and after the infection of the upper airways. Complete viral inactivation was observed for the cyclosporine-loaded micelles while a very low activity was evidenced for the non-formulated drug, suggesting a synergistic activity of the drug and the formulation. In conclusion, this work showed that the developed cyclosporine A-loaded micellar formulations have the potential to be clinically effective against a wide spectrum of coronavirus variants.
Assuntos
COVID-19 , Ciclosporina , Humanos , Ciclosporina/farmacologia , Micelas , SARS-CoV-2 , Sprays Nasais , Portadores de Fármacos , Polietilenoglicóis , Antivirais/farmacologiaRESUMO
Polyelectrolyte-drug complexes are interesting alternatives to improve unfavorable drug properties. Vancomycin (VAN) is an antimicrobial used in the treatment of methicillin-resistant Staphylococcus aureus pulmonary infections in patients with cystic fibrosis. It is generally administered intravenously with a high incidence of adverse side effects, which could be reduced by intrapulmonary administration. Currently, there are no commercially available inhalable formulations containing VAN. Thus, the present work focuses on the preparation and characterization of an ionic complex between hyaluronic acid (HA) and VAN with potential use in inhalable formulations. A particulate-solid HA-VAN25 complex was obtained by spray drying from an aqueous dispersion. FTIR spectroscopy and thermal analysis confirmed the ionic interaction between HA and VAN, while an amorphous diffraction pattern was observed by X-ray. The powder density, geometric size and morphology showed the suitable aerosolization and aerodynamic performance of the powder, indicating its capability of reaching the deep lung. An in vitro extended-release profile of VAN from the complex was obtained, exceeding 24 h. Microbiological assays against methicillin-resistant and -sensitive reference strains of Staphylococcus aureus showed that VAN preserves its antibacterial efficacy. In conclusion, HA-VAN25 exhibited interesting properties for the development of inhalable formulations with potential efficacy and safety advantages over conventional treatment.
RESUMO
One of the most frequent causes of respiratory infections are viruses. Viruses reaching the airways can be absorbed by the human body through the respiratory mucosa and mainly infect lung cells. Several viral infections are not yet curable, such as coronavirus-2 (SARS-CoV-2). Furthermore, the side effect of synthetic antiviral drugs and reduced efficacy against resistant variants have reinforced the search for alternative and effective treatment options, such as plant-derived antiviral molecules. Curcumin (CUR) and quercetin (QUE) are two natural compounds that have been widely studied for their health benefits, such as antiviral and anti-inflammatory activity. However, poor oral bioavailability limits the clinical applications of these natural compounds. In this work, nanoemulsions (NE) co-encapsulating CUR and QUE designed for nasal administration were developed as promising prophylactic and therapeutic treatments for viral respiratory infections. The NEs were prepared by high-pressure homogenization combined with the phase inversion temperature technique and evaluated for their physical and chemical characteristics. In vitro assays were performed to evaluate the nanoemulsion retention into the porcine nasal mucosa. In addition, the CUR and QUE-loaded NE antiviral activity was tested against a murine ß-COV, namely MHV-3. The results evidenced that CUR and QUE loaded NE had a particle size of 400 nm and retention in the porcine nasal mucosa. The antiviral activity of the NEs showed a percentage of inhibition of around 99 %, indicating that the developed NEs has interesting properties as a therapeutic and prophylactic treatment against viral respiratory infections.
Assuntos
Administração Intranasal , Antivirais , Curcumina , Emulsões , Quercetina , Curcumina/administração & dosagem , Curcumina/farmacologia , Curcumina/química , Quercetina/administração & dosagem , Quercetina/farmacologia , Quercetina/química , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Antivirais/química , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Suínos , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/virologia , Infecções Respiratórias/prevenção & controle , Mucosa Nasal/metabolismo , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/virologia , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , HumanosRESUMO
Artemisinin, a poorly water-soluble antimalarial drug, presents a low and erratic bioavailability upon oral administration. The aim of this work was to study an agglomerated powder dosage form for oral administration of artemisinin based on the artemisinin/ß-cyclodextrin primary microparticles. These primary microparticles were prepared by spray-drying a water-methanol solution of artemisinin/ß-cyclodextrin. ß-Cyclodextrin in spray-dried microparticles increased artemisinin water apparent solubility approximately sixfold. The thermal analysis evidenced a reduction in the enthalpy value associated with drug melting, due to the decrease in drug crystallinity. The latter was also evidenced by powder X-ray diffraction analysis, while (13)C-NMR analysis indicated the partial complexation with ß-cyclodextrin. Agglomerates obtained by sieve vibration of spray-dried artemisinin/ß-cyclodextrin primary microparticles exhibited free flowing and close packing properties compared with the non-flowing microparticulate powder. The in vitro dissolution rate determination of artemisinin from the agglomerates showed that in 10 min about 70% of drug was released from the agglomerates, whereas less than 10% of artemisinin was dissolved from raw material powder. Oral administration of agglomerates in rats yielded higher artemisinin plasma levels compared to those of pure drug. In the case of the agglomerated powder, a 3.2-fold increase in drug fraction absorbed was obtained.
Assuntos
Artemisininas/administração & dosagem , beta-Ciclodextrinas/administração & dosagem , Administração Oral , Artemisininas/farmacocinética , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Formas de Dosagem , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , beta-Ciclodextrinas/farmacocinéticaRESUMO
INTRODUCTION: The urgency to replace the propellants currently in use with the new sustainable ones has given rise to the need for investigation and reformulation of pMDIs. AREAS COVERED: The reformulation requires in-depth knowledge of the physico-chemical characteristics of the new propellants, which impact the atomization capacity and the plume geometry. Among the investigated propellants, HFA 152a, due to its lower vapor pressure and higher surface tension compared to HFA 134a, deliver larger particles and has a higher solvent capacity toward lipophilic drugs. On the other hand, HFO 1234ze has properties more similar to HFA 134a, but showed lower reproducibility of the generated spray, indicating a possible high susceptibility to variation in the consistency of the dose delivered. In addition, the device components currently in use are compatible with the new propellants. This allowed promising preliminary results in the re-formulation of pMDIs by academia and pharma companies. However, there is little information about the clinical studies required to allow the marketing of these new products. EXPERT OPINION: Overall, studies conducted so far show that the transition is technically possible, and the main obstacle will be represented by the investment required to put the product on the market.
Assuntos
Propelentes de Aerossol , Inaladores Dosimetrados , Reprodutibilidade dos Testes , Propelentes de Aerossol/química , Hidrocarbonetos Fluorados/química , Administração por InalaçãoRESUMO
INTRODUCTION: The characterisation of nasal formulations is a critical point. However, there are still no recommendations or guidelines in terms of standard approaches for evaluating the formulation's nasal deposition and/or coverage profile. This study optimises a method for quantifying silicone nasal cast deposition and coverage of liquid formulations using different nasal devices. OBJECTIVES: The present work investigates the nasal deposition and coverage patterns of innovative nasal spray nozzles producing slow velocity soft mists, using a nasal cavity replica and a fluorescent dye. METHODS: The study of the deposition pattern of a fluorescent liquid formulation in a transparent nasal cast was carried out in both the presence and absence of a simulated inhalation flow. The extent of the deposition pattern was investigated using ImageJ and fluorescence in the nasal cast, quantified by fluorometric analysis. The particle size distribution and initial droplet velocity were determined using a laser diffractometer and a high-speed camera with a frame rate of 1000 fps. RESULTS: A uniform intranasal coverage was obtained with droplets of a volume median particle size (Dv50) between 15 and 25 µm in airflow between 10 and 30 L/min. In these conditions, aerosol formulations can be uniformly deposited in the vestibule and turbinate cavity nasal regions, with less than 10 % passing beyond the nasopharyngeal region. CONCLUSION: The method applied allowed for the determination of the coverage of the nasal cast in different regions using images analysis and fluorometric analysis. Droplet velocity is a critical parameter in the deposition in the nasal cavity. With standard swirl nozzles, many droplets are found on the surface of the nasal vestibule. Soft mist nozzles produce smaller droplets at a much lower initial velocity (<1 m/s), resulting in a more uniform coverage.