Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proteins ; 46(4): 368-79, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11835512

RESUMO

Our recently developed off-lattice bead model capable of simulating protein structures with mixed alpha/beta content has been extended to model the folding of a ubiquitin-like protein and provides a means for examining the more complex kinetics involved in the folding of larger proteins. Using trajectories generated from constant-temperature Langevin dynamics simulations and sampling with the multiple multi-histogram method over five-order parameters, we are able to characterize the free energy landscape for folding and find evidence for folding through compact intermediates. Our model reproduces the observation that the C-terminus loop structure in ubiquitin is the last to fold in the folding process and most likely plays a spectator role in the folding kinetics. The possibility of a productive metastable intermediate along the folding pathway consisting of collapsed states with no secondary structure, and of intermediates or transition structures involving secondary structural elements occurring early in the sequence, is also supported by our model. The kinetics of folding remain multi-exponential below the folding temperature, with glass-like kinetics appearing at T/T(f) approximately 0.86. This new physicochemical model, designed to be predictive, helps validate the value of modeling protein folding at this level of detail for genomic-scale studies, and motivates further studies of other protein topologies and the impact of more complex energy functions, such as the addition of solvation forces.


Assuntos
Modelos Moleculares , Ubiquitina/química , Sequência de Aminoácidos , Animais , Simulação por Computador , Cinética , Modelos Teóricos , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas/química , Termodinâmica
2.
J Comput Biol ; 9(1): 35-54, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11911794

RESUMO

We examine the ability of our recently introduced minimalist protein model to reproduce experimentally measured thermodynamic and kinetic changes upon sequence mutation in the well-studied immunoglobulin-binding protein L. We have examined five different sequence mutations of protein L that are meant to mimic the same mutation type studied experimentally: two different mutations which disrupt the natural preference in the beta-hairpin #1 and beta-hairpin #2 turn regions, two different helix mutants where a surface polar residue in the alpha-helix has been mutated to a hydrophobic residue, and a final mutant to further probe the role of nonnative hydrophobic interactions in the folding process. These simulated mutations are analyzed in terms of various kinetic and thermodynamic changes with respect to wild type, but in addition we evaluate the structure-activity relationship of our model protein based on the phi-value calculated from both the kinetic and thermodynamic perspectives. We find that the simulated thermodynamic phi-values reproduce the experimental trends in the mutations studied and allow us to circumvent the difficult interpretation of the complicated kinetics of our model. Furthermore, the level of resolution of the model allows us to directly predict what experiments seek in regard to protein engineering studies of protein folding--namely the residues or portions of the polypeptide chain that contribute to the crucial step in the folding of the wild-type protein.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Engenharia de Proteínas/métodos , Proteínas de Bactérias/metabolismo , Simulação por Computador , Proteínas de Ligação a DNA/metabolismo , Cinética , Modelos Químicos , Mutação/genética , Conformação Proteica , Dobramento de Proteína , Termodinâmica
3.
Genome Res ; 18(10): 1638-42, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18775913

RESUMO

Forward genetic mutational studies, adaptive evolution, and phenotypic screening are powerful tools for creating new variant organisms with desirable traits. However, mutations generated in the process cannot be easily identified with traditional genetic tools. We show that new high-throughput, massively parallel sequencing technologies can completely and accurately characterize a mutant genome relative to a previously sequenced parental (reference) strain. We studied a mutant strain of Pichia stipitis, a yeast capable of converting xylose to ethanol. This unusually efficient mutant strain was developed through repeated rounds of chemical mutagenesis, strain selection, transformation, and genetic manipulation over a period of seven years. We resequenced this strain on three different sequencing platforms. Surprisingly, we found fewer than a dozen mutations in open reading frames. All three sequencing technologies were able to identify each single nucleotide mutation given at least 10-15-fold nominal sequence coverage. Our results show that detecting mutations in evolved and engineered organisms is rapid and cost-effective at the whole-genome level using new sequencing technologies. Identification of specific mutations in strains with altered phenotypes will add insight into specific gene functions and guide further metabolic engineering efforts.


Assuntos
Análise Mutacional de DNA/métodos , Genoma Fúngico , Mutação , Pichia/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA