Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(36): e2403577121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190353

RESUMO

Evolution can occur over ecological timescales, suggesting a potentially important role for rapid evolution in shaping community trait distributions. However, evidence of concordant eco-evolutionary dynamics often comes from in vitro studies of highly simplified communities, and measures of ecological and evolutionary dynamics are rarely directly comparable. Here, we quantified how ecological species sorting and rapid evolution simultaneously shape community trait distributions by tracking within- and between-species changes in a key trait in a complex bacterial community. We focused on the production of siderophores; bacteria use these costly secreted metabolites to scavenge poorly soluble iron and to detoxify environments polluted with toxic nonferrous metals. We found that responses to copper-imposed selection within and between species were ultimately the same-intermediate siderophore levels were favored-and occurred over similar timescales. Despite being a social trait, this level of siderophore production was selected regardless of whether species evolved in isolation or in a community context. Our study suggests that evolutionary selection can play a pivotal role in shaping community trait distributions within natural, highly complex, bacterial communities. Furthermore, trait evolution may not always be qualitatively affected by interactions with other community members.


Assuntos
Bactérias , Evolução Biológica , Seleção Genética , Sideróforos , Sideróforos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Ecossistema , Cobre/metabolismo , Ferro/metabolismo
2.
Elife ; 112022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188102

RESUMO

With rising antibiotic resistance, there has been increasing interest in treating pathogenic bacteria with bacteriophages (phage therapy). One limitation of phage therapy is the ease at which bacteria can evolve resistance. Negative effects of resistance may be mitigated when resistance results in reduced bacterial growth and virulence, or when phage coevolves to overcome resistance. Resistance evolution and its consequences are contingent on the bacteria-phage combination and their environmental context, making therapeutic outcomes hard to predict. One solution might be to conduct 'in vitro evolutionary simulations' using bacteria-phage combinations from the therapeutic context. Overall, our aim was to investigate parallels between in vitro experiments and in vivo dynamics in a human participant. Evolutionary dynamics were similar, with high levels of resistance evolving quickly with limited evidence of phage evolution. Resistant bacteria-evolved in vitro and in vivo-had lower virulence. In vivo, this was linked to lower growth rates of resistant isolates, whereas in vitro phage resistant isolates evolved greater biofilm production. Population sequencing suggests resistance resulted from selection on de novo mutations rather than sorting of existing variants. These results highlight the speed at which phage resistance can evolve in vivo, and how in vitro experiments may give useful insights for clinical evolutionary outcomes.


Assuntos
Bacteriófagos , Terapia por Fagos , Bacteriófagos/genética , Biofilmes , Humanos , Terapia por Fagos/métodos , Pseudomonas aeruginosa/genética , Virulência
3.
iScience ; 24(6): 102659, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34151242

RESUMO

Microbes can invade as whole communities, but the ecology of whole community invasions is poorly understood. Here, we investigate how invader propagule pressure (the number of invading organisms) affects the composition and function of invaded laboratory methanogenic communities. An invading community was equally successful at establishing itself in a resident community regardless of propagule pressure, which varied between 0.01 and 10% of the size resident community. Invasion resulted in enhanced biogas production (to the level of the pure invading community) but only when propagule pressure was 1% or greater. This inconsistency between invasion success and changes in function can be explained by a lower richness of invading taxa at lower propagule pressures, and an important functional role of the taxa that were absent. Our results highlight that whole community invasion ecology cannot simply be extrapolated from our understanding of single species invasions. Moreover, we show that methane production can be enhanced by invading poorly performing reactors with a better performing community at levels that may be practical in industrial settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA