Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Hum Mol Genet ; 28(9): 1498-1514, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590647

RESUMO

Mutations in the microtubule-associated protein tau (MAPT) underlie multiple neurodegenerative disorders, yet the pathophysiological mechanisms are unclear. A novel variant in MAPT resulting in an alanine to threonine substitution at position 152 (A152T tau) has recently been described as a significant risk factor for both frontotemporal lobar degeneration and Alzheimer's disease. Here we use complementary computational, biochemical, molecular, genetic and imaging approaches in Caenorhabditis elegans and mouse models to interrogate the effects of the A152T variant on tau function. In silico analysis suggests that a threonine at position 152 of tau confers a new phosphorylation site. This finding is borne out by mass spectrometric survey of A152T tau phosphorylation in C. elegans and mouse. Optical pulse-chase experiments of Dendra2-tau demonstrate that A152T tau and phosphomimetic A152E tau exhibit increased diffusion kinetics and the ability to traverse across the axon initial segment more efficiently than wild-type (WT) tau. A C. elegans model of tauopathy reveals that A152T and A152E tau confer patterns of developmental toxicity distinct from WT tau, likely due to differential effects on retrograde axonal transport. These data support a role for phosphorylation of the variant threonine in A152T tau toxicity and suggest a mechanism involving impaired retrograde axonal transport contributing to human neurodegenerative disease.


Assuntos
Alelos , Substituição de Aminoácidos , Variação Genética , Proteínas tau/genética , Proteínas tau/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Axonal , Axônios/metabolismo , Caenorhabditis elegans , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Camundongos , Mutação , Fosforilação , Ligação Proteica , Vesículas Sinápticas/metabolismo , Tauopatias/etiologia , Tauopatias/metabolismo , Tauopatias/patologia
2.
Proc Natl Acad Sci U S A ; 115(33): E7710-E7719, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061394

RESUMO

Cell-autonomous and cell-nonautonomous mechanisms of neurodegeneration appear to occur in the proteinopathies, including Alzheimer's and Parkinson's diseases. However, how neuronal toxicity is generated from misfolding-prone proteins secreted by nonneuronal tissues and whether modulating protein aggregate levels at distal locales affects the degeneration of postmitotic neurons remains unknown. We generated and characterized animal models of the transthyretin (TTR) amyloidoses that faithfully recapitulate cell-nonautonomous neuronal proteotoxicity by expressing human TTR in the Caenorhabditis elegans muscle. We identified sensory neurons with affected morphological and behavioral nociception-sensing impairments. Nonnative TTR oligomer load and neurotoxicity increased following inhibition of TTR degradation in distal macrophage-like nonaffected cells. Moreover, reducing TTR levels by RNAi or by kinetically stabilizing natively folded TTR pharmacologically decreased TTR aggregate load and attenuated neuronal dysfunction. These findings reveal a critical role for in trans modulation of aggregation-prone degradation that directly affects postmitotic tissue degeneration observed in the proteinopathies.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Pré-Albumina/metabolismo , Agregados Proteicos , Neuropatias Amiloides/genética , Neuropatias Amiloides/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Humanos , Pré-Albumina/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo
3.
FASEB J ; 28(7): 3023-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24719356

RESUMO

The endocytic compartment is emerging as a functional platform for controlling important cellular processes. We have found that ∼10 to 15% of total KRas, a protein that is frequently mutated in cancer, is present on endosomes, independent of its activation state. The dynamics of GFP-KRas wild-type (WT) and constitutively active or inactive mutants on endosomes were analyzed by fluorescence recovery after photobleaching (FRAP) microscopy. The measurements revealed an extraordinarily fast recovery of KRas WT [half-time (HT), ∼1.3 s] compared to HRas, Rab5, and EGFR, with the active KRasG12V mutant being significantly faster and more mobile (HT, ∼1 s, and ∼82% of exchangeable fraction) than the inactive KRasS17N (HT, ∼1.6 s, and ∼60% of exchangeable fraction). KRas rapidly switches from the cytoplasm to the endosomal membranes by an electrostatic interaction between its polybasic region and the endosomal acidic phospholipids, mainly phosphatidylserine.-Gelabert-Baldrich, M., Soriano-Castell, D., Calvo, M., Lu, A., Viña-Vilaseca, A., Rentero, C., Pol, A., Grinstein, S. Enrich, C., Tebar, F. Dynamics of KRas on endosomes: involvement of acidic phospholipids in its association.


Assuntos
Endossomos/metabolismo , Fosfolipídeos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Citoplasma/genética , Citoplasma/metabolismo , Endocitose/genética , Endocitose/fisiologia , Endossomos/genética , Fibroblastos/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/metabolismo , Membranas Intracelulares/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
4.
Org Biomol Chem ; 12(10): 1652-63, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24480922

RESUMO

Antimicrobial peptides are an interesting source of non-cytotoxic drug delivery vectors. Herein, we report on the identification of a new cell-penetrating peptide (KKLFKKILKKL-NH2, BP16) from a set of antimicrobial peptides selected from a library of cecropin-melittin hybrids (CECMEL11) previously designed to be used in plant protection. This set of peptides was screened for their cytotoxicity against breast adenocarcinoma MCF-7, pancreas adenocarcinoma CAPAN-1 and mouse embryonic fibroblast 3T3 cell lines. BP16 resulted to be non-toxic against both malignant and non-malignant cells at concentrations up to 200 µM. We demonstrated by flow cytometry and confocal microscopy that BP16 is mainly internalized in the cells through a clathrin dependent endocytosis and that it efficiently accumulates in the cell cytoplasm. We confirmed that the cell-penetrating properties of BP16 are retained after conjugating it to the breast tumor homing peptide CREKA. Furthermore, we assessed the potential of BP16 as a drug delivery vector by conjugating the anticancer drug chlorambucil to BP16 and to a CREKA-BP16 conjugate. The efficacy of the drug increased between 6 and 9 times when conjugated to BP16 and between 2 and 4.5 times when attached to the CREKA-BP16 derivative. The low toxicity and the excellent cell-penetrating properties clearly suggest that BP16 is a suitable vector for the delivery of therapeutic agents into cells.


Assuntos
Antineoplásicos/farmacologia , Peptídeos Penetradores de Células/farmacologia , Sistemas de Liberação de Medicamentos , Células 3T3 , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Camundongos , Relação Estrutura-Atividade
5.
Antioxidants (Basel) ; 13(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38671908

RESUMO

The global increase in the aging population has led to a rise in many age-related diseases with continuing unmet therapeutic needs. Research into the molecular mechanisms underlying both aging and neurodegeneration has identified promising therapeutic targets, such as the oxytosis/ferroptosis cell death pathway, in which mitochondrial dysfunction plays a critical role. This study focused on sterubin and fisetin, two flavonoids from the natural pharmacopeia previously identified as strong inhibitors of the oxytosis/ferroptosis pathway. Here, we investigated the effects of the compounds on the mitochondrial physiology in HT22 hippocampal nerve cells under oxytotic/ferroptotic stress. We show that the compounds can restore mitochondrial homeostasis at the level of redox regulation, calcium uptake, biogenesis, fusion/fission dynamics, and modulation of respiration, leading to the enhancement of bioenergetic efficiency. However, mitochondria are not required for the neuroprotective effects of sterubin and fisetin, highlighting their diverse homeostatic impacts. Sterubin and fisetin, thus, provide opportunities to expand drug development strategies for anti-oxytotic/ferroptotic agents and offer new perspectives on the intricate interplay between mitochondrial function, cellular stress, and the pathophysiology of aging and age-related neurodegenerative disorders.

6.
Redox Biol ; 72: 103138, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581858

RESUMO

The oxytosis/ferroptosis regulated cell death pathway is an emerging field of research owing to its pathophysiological relevance to a wide range of neurological disorders, including Alzheimer's and Parkinson's diseases and traumatic brain injury. Developing novel neurotherapeutics to inhibit oxytosis/ferroptosis offers exciting opportunities for the treatment of these and other neurological diseases. Previously, we discovered cannabinol (CBN) as a unique, potent inhibitor of oxytosis/ferroptosis by targeting mitochondria and modulating their function in neuronal cells. To further elucidate which key pharmacophores and chemical space are essential to the beneficial effects of CBN, we herein introduce a fragment-based drug discovery strategy in conjunction with cell-based phenotypic screens using oxytosis/ferroptosis to determine the structure-activity relationship of CBN. The resulting information led to the development of four new CBN analogs, CP1-CP4, that not only preserve the sub-micromolar potency of neuroprotection and mitochondria-modulating activities seen with CBN in neuronal cell models but also have better druglike properties. Moreover, compared to CBN, the analog CP1 shows improved in vivo efficacy in the Drosophila model of mild traumatic brain injury. Together these studies identify the key molecular scaffolds of cannabinoids that contribute to neuroprotection against oxytosis/ferroptosis. They also highlight the advantageous approach of combining in vitro cell-based assays and rapid in vivo studies using Drosophila models for evaluating new therapeutic compounds.


Assuntos
Canabinol , Descoberta de Drogas , Animais , Humanos , Canabinol/farmacologia , Canabinol/análogos & derivados , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Relação Estrutura-Atividade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Drosophila
7.
Genes (Basel) ; 15(1)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38254990

RESUMO

Niemann-Pick disease type C (NPC) is a fatal neurodegenerative condition caused by genetic mutations of the NPC1 or NPC2 genes that encode the NPC1 and NPC2 proteins, respectively, which are believed to be responsible for cholesterol efflux from late-endosomes/lysosomes. The pathogenic mechanisms that lead to neurodegeneration in NPC are not well understood. There are, however, well-defined spatiotemporal patterns of neurodegeneration that may provide insight into the pathogenic process. For example, the cerebellum is severely affected from early disease stages, compared with cerebral regions, which remain relatively spared until later stages. Using a genome-wide transcriptome analysis, we have recently identified an aberrant pattern of interferon activation in the cerebella of pre-symptomatic Npc1-/- mice. Here, we carried out a comparative transcriptomic analysis of cerebral cortices and cerebella of pre-symptomatic Npc1-/- mice and age-matched controls to identify differences that may help explain the pathological progression within the NPC brain. We report lower cerebral expression of genes within interferon signaling pathways, and significant differences in the regulation of oxidative stress, compared with the cerebellum. Our findings suggest that a delayed onset of interferon signaling, possibly linked to lower oxidative stress, may account for the slower onset of cerebral cortical pathology in the disease.


Assuntos
Doença de Niemann-Pick Tipo C , Animais , Camundongos , Doença de Niemann-Pick Tipo C/genética , Cerebelo , Córtex Cerebral , Estresse Oxidativo , Interferons/genética
8.
Traffic ; 12(12): 1879-96, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21883766

RESUMO

The main cellular Ca(2+) sensor, calmodulin (CaM), interacts with and regulates several small GTPases, including Rac1. The present study revealed high binding affinity of Rac1 for CaM and uncovered two new essential binding domains in Rac1: the polybasic region, important for phosphatidylinositol-4-phosphate 5-kinase (PIP5K) interaction, and the adjacent prenyl group. CaM inhibition increased Rac1 binding to PIP5K and induced an extensive phosphatidylinositol 4,5-bisphosphate (PI4,5P(2) )-positive tubular membrane network. Immunofluorescence demonstrated that the tubules were plasma membrane invaginations resulting from an ADP-ribosylation factor 6 (ARF6)-dependent and clathrin-independent pathway. The role of Rac1 in this endocytic route was analyzed by expressing constitutively active and inactive mutants. While active Rac1 impaired tubulation, the inactive mutant enhanced it. Intriguingly, inactive mutant expression elicited tubulation by recruiting PIP5K and inhibiting Rac1 at the plasma membrane. Accordingly, CaM inhibition inactivated Rac1 and increased Rac1/PIP5K interaction. Therefore, our findings highlight an important new role for Rac1 and CaM in controlling clathrin-independent endocytosis.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Calmodulina/metabolismo , Endocitose/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Fator 6 de Ribosilação do ADP , Animais , Células COS , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Clatrina/metabolismo , Camundongos , Células NIH 3T3 , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Células Vero
9.
Free Radic Biol Med ; 180: 33-51, 2022 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-34999187

RESUMO

The oxytosis/ferroptosis regulated cell death pathway recapitulates many features of mitochondrial dysfunction associated with the aging brain and has emerged as a potential key mediator of neurodegeneration. It has thus been proposed that the oxytosis/ferroptosis pathway can be used to identify novel drug candidates for the treatment of age-associated neurodegenerative diseases that act by preserving mitochondrial function. Previously, we identified cannabinol (CBN) as a potent neuroprotector. Here, we demonstrate that not only does CBN protect nerve cells from oxytosis/ferroptosis in a manner that is dependent on mitochondria and it does so independently of cannabinoid receptors. Specifically, CBN directly targets mitochondria and preserves key mitochondrial functions including redox regulation, calcium uptake, membrane potential, bioenergetics, biogenesis, and modulation of fusion/fission dynamics that are disrupted following induction of oxytosis/ferroptosis. These protective effects of CBN are at least partly mediated by the promotion of endogenous antioxidant defenses and the activation of AMP-activated protein kinase (AMPK) signaling. Together, our data highlight the potential of mitochondrially-targeted compounds such as CBN as novel oxytotic/ferroptotic inhibitors to rescue mitochondrial dysfunction as well as opportunities for the discovery and development of future neurotherapeutics.


Assuntos
Ferroptose , Canabinol/metabolismo , Canabinol/farmacologia , Morte Celular , Mitocôndrias/metabolismo , Receptores de Canabinoides/metabolismo
10.
Free Radic Biol Med ; 171: 219-231, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34010663

RESUMO

Ferroptosis was first described in 2012 as an iron- and lipid peroxidation-dependent form of regulated cell death. Since its initial description, these two characteristics have informed numerous cell culture studies where inhibitors of lipid peroxidation and/or iron chelators have been shown to prevent cell death induced by a wide range of insults. However, it is not clear whether these two characteristics are sufficient to distinguish ferroptosis from other forms of regulated cell death. Thus, the primary goal of this study was to determine whether a unique combination of features could be identified that would provide an approach to more clearly separate ferroptosis from other forms of regulated cell death. To this end, multiple pharmacological inhibitors based on a variety of studies were tested. Many of these inhibitors were previously shown to protect cells from oxytosis, a regulated cell death pathway that mechanistically overlaps with ferroptosis and is induced by some of the same chemicals as ferroptosis. These inhibitors were not only tested against both known ferroptosis and oxytosis inducers but also a number of other insults that have been suggested to induce ferroptosis. The results show that a pharmacological fingerprint for ferroptosis can be established and used to categorize toxic insults into those that overlap with oxytosis/ferroptosis and those that do not.


Assuntos
Ferroptose , Morte Celular , Ferro , Peroxidação de Lipídeos
11.
Free Radic Biol Med ; 177: 313-325, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748909

RESUMO

Because old age is the greatest risk factor for Alzheimer's disease (AD), it is critical to target the pathological events that link aging to AD in order to develop an efficient treatment that acts upon the primary causes of the disease. One such event might be the activation of oxytosis/ferroptosis, a unique cell death mechanism characterized by mitochondrial dysfunction and lethal lipid peroxidation. Here, a comprehensive library of >900 natural compounds was screened for protection against oxytosis/ferroptosis in nerve cells with the goal of better understanding the chemical nature of inhibitors of oxytosis/ferroptosis. Although the compounds tested spanned structurally diverse chemical classes from animal, microbial, plant and synthetic origins, a small set of very potent anti-oxytotic/ferroptotic compounds was identified that was highly enriched in plant quinones. The ability of these compounds to protect against oxytosis/ferroptosis strongly correlated with their ability to protect against in vitro ischemia and intracellular amyloid-beta toxicity in nerve cells, indicating that aspects of oxytosis/ferroptosis also underly other toxicities that are relevant to AD. Importantly, the anti-oxytotic/ferroptotic character of the quinone compounds relied on their capacity to target and directly prevent lipid peroxidation in a manner that required the reducing activity of cellular redox enzymes, such as NAD(P)H:quinone oxidoreductase 1 (NQO1) and ferroptosis suppressor protein 1 (FSP1). Because some of the compounds increased the production of total reactive oxygen species while decreasing lipid peroxidation, it appears that the pro-oxidant character of a compound can coexist with an inhibitory effect on lipid peroxidation and, consequently, still prevent oxytosis/ferroptosis. These findings have significant implications for the understanding of oxytosis/ferroptosis and open new approaches to the development of future neurotherapies.


Assuntos
Produtos Biológicos/farmacologia , Ferroptose , Neurônios/efeitos dos fármacos , Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Morte Celular , Ferroptose/efeitos dos fármacos , Peroxidação de Lipídeos
12.
Pharmacol Ther ; 221: 107749, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33227325

RESUMO

Mitochondria are the primary source of energy production in the brain thereby supporting most of its activity. However, mitochondria become inefficient and dysfunctional with age and to a greater extent in neurological disorders. Thus, mitochondria represent an emerging drug target for many age-associated neurological disorders. This review summarizes recent advances (covering from 2010 to May 2020) in the use of natural products from plant, animal, and microbial sources as potential neuroprotective agents to restore mitochondrial function. Natural products from diverse classes of chemical structures are discussed and organized according to their mechanism of action on mitochondria in terms of modulation of biogenesis, dynamics, bioenergetics, calcium homeostasis, and membrane potential, as well as inhibition of the oxytosis/ferroptosis pathway. This analysis emphasizes the significant value of natural products for mitochondrial pharmacology as well as the opportunities and challenges for the discovery and development of future neurotherapeutics.


Assuntos
Produtos Biológicos , Mitocôndrias , Envelhecimento/patologia , Animais , Produtos Biológicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/terapia , Fármacos Neuroprotetores/farmacologia
13.
Br J Pharmacol ; 178(18): 3611-3626, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33931859

RESUMO

Oxytosis/ferroptosis is a form of non-apoptotic regulated cell death characterized by glutathione (GSH) depletion and dysregulated production of mitochondrial ROS that results in lethal lipid peroxidation. As the significance of oxytosis/ferroptosis to age-associated human diseases is now beginning to be appreciated, the development of innovative approaches to identify novel therapeutics that target the oxytosis/ferroptosis pathway could not be more timely. Due to their sessile nature, plants are exposed to a variety of stresses that trigger physiological changes similar to those found in oxytosis/ferroptosis. As such, they have evolved a rich array of chemical strategies to deal with those challenging conditions. This review details a drug discovery approach for identifying potent inhibitors of oxytosis/ferroptosis from plants for the treatment of Alzheimer's disease and related dementias, thereby highlighting the tremendous potential of plant-based research for developing new medicines while simultaneously being a catalyst for sustainability.


Assuntos
Ferroptose , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos , Mitocôndrias/metabolismo
14.
ACS Chem Neurosci ; 11(22): 3823-3837, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33124812

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, and up to now, there are no disease-modifying drugs available. Natural product hybrids based on the flavonoid taxifolin and phenolic acids have shown a promising pleiotropic neuroprotective profile in cell culture assays and even disease-modifying effects in vivo. However, the detailed mechanisms of action remain unclear. To elucidate the distinct intracellular targets of 7-O-esters of taxifolin, we present in this work the development and application of a chemical probe, 7-O-cinnamoyltaxifolin-alkyne, for target identification using activity-based protein profiling. 7-O-Cinnamoyltaxifolin-alkyne remained neuroprotective in all cell culture assays. Western blot analysis showed a comparable influence on the same intracellular pathways as that of the lead compound 7-O-cinnamoyltaxifolin, thereby confirming its suitability as a probe for target identification experiments. Affinity pulldown and MS analysis revealed adenine nucleotide translocase 1 (ANT-1) and sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) as intracellular interaction partners of 7-O-cinnamoyltaxifolin-alkyne and thus of 7-O-esters of taxifolin.


Assuntos
Doença de Alzheimer , Flavonoides , Retículo Endoplasmático , Flavonoides/farmacologia , Humanos , Neuroproteção
15.
Front Pharmacol ; 11: 208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210808

RESUMO

Plants, in particular those with a history in traditional medicine, hold enormous potential as sources of new therapies for dementias such as Alzheimer's disease (AD). The largest collections of plants can be found in herbaria all over the world, but the value of these collections to AD drug discovery has been significantly neglected. As a proof of principle, we investigated the neuroprotective activity of herbarium specimens of Eriodictyon (yerba santa), a genus with a long history of usage by the indigenous tribes in California to treat respiratory and age-related complications. Dichloromethane extracts were prepared from leaves of 14 Eriodictyon taxa preserved in the SD Herbarium located at the San Diego Natural History Museum. The extracts were tested for neuroprotection in nerve cells against oxytosis and ferroptosis and for anti-inflammatory activity in brain microglial cells exposed to bacterial lipopolysaccharide. In parallel, the levels of the flavanones sterubin, eriodictyol and homoeriodictyol were measured by mass spectrometry. Several Eriodictyon species presented strong neuroprotective and anti-inflammatory activities. The protective properties of the extracts correlated with the amount of sterubin, but not with eriodictyol or homoeriodictyol, indicating that sterubin is the major active compound in these species. The occurrence of eriodictyol and homoeriodictyol may be predictive of the phylogenetic relationship between members in the genus Eriodictyon. The data offer insight into the traditional use of yerba santa across indigenous tribes in California, while demonstrating the value of herbarium collections for the discovery of novel therapeutic compounds for the treatment of neurodegenerative diseases.

16.
Cell Death Dis ; 11(10): 828, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024077

RESUMO

Amyloid beta (Aß) accumulates within neurons in the brains of early stage Alzheimer's disease (AD) patients. However, the mechanism underlying its toxicity remains unclear. Here, a triple omics approach was used to integrate transcriptomic, proteomic, and metabolomic data collected from a nerve cell model of the toxic intracellular aggregation of Aß. It was found that intracellular Aß induces profound changes in the omics landscape of nerve cells that are associated with a pro-inflammatory, metabolic reprogramming that predisposes cells to die via the oxytosis/ferroptosis regulated cell death pathway. Notably, the degenerative process included substantial alterations in glucose metabolism and mitochondrial bioenergetics. Our findings have implications for the understanding of the basic biology of proteotoxicity, aging, and AD as well as for the development of future therapeutic interventions designed to target the oxytosis/ferroptosis regulated cell death pathway in the AD brain.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Morte Celular/fisiologia , Ferroptose/fisiologia , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Morte Celular/genética , Humanos , Mitocôndrias/metabolismo , Proteômica/métodos
19.
Sci Rep ; 7(1): 6866, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28761175

RESUMO

Clathrin-dependent and -independent pathways contribute for ß1-integrin endocytosis. This study defines a tubular membrane clathrin-independent endocytic network, induced with the calmodulin inhibitor W13, for ß1-integrin internalization. This pathway is dependent on increased phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) levels and dynamin activity at the plasma membrane. Exogenous addition of PI(4,5)P2 or phosphatidylinositol-4-phosphate 5-kinase (PIP5K) expression mimicked W13-generated-tubules which are inhibited by active Rac1. Therefore, the molecular mechanisms downstream of Rac1, that controls this plasma membrane tubulation, were analyzed biochemically and by the expression of different Rac1 mutants. The results indicate that phospholipase C and ROCK1 are the main Rac1 effectors that impair plasma membrane invagination and tubule formation, essentially by decreasing PI(4,5)P2 levels and promoting cortical actomyosin assembly respectively. Interestingly, among the plethora of proteins that participate in membrane remodeling, this study revealed that ROCK1, the well-known downstream RhoA effector, has an important role in Rac1 regulation of actomyosin at the cell cortex. This study provides new insights into Rac1 functioning on plasma membrane dynamics combining phosphatidylinositides and cytoskeleton regulation.


Assuntos
Endocitose , Microtúbulos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Actomiosina/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Humanos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfolipases Tipo C/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA