RESUMO
Little information is available about how post-transcriptional mechanisms regulate the aging process. Here, we show that the RNA-binding protein Pumilio2 (PUM2), which is a translation repressor, is induced upon aging and acts as a negative regulator of lifespan and mitochondrial homeostasis. Multi-omics and cross-species analyses of PUM2 function show that it inhibits the translation of the mRNA encoding for the mitochondrial fission factor (Mff), thereby impairing mitochondrial fission and mitophagy. This mechanism is conserved in C. elegans by the PUM2 ortholog PUF-8. puf-8 knock-down in old nematodes and Pum2 CRISPR/Cas9-mediated knockout in the muscles of elderly mice enhances mitochondrial fission and mitophagy in both models, hence improving mitochondrial quality control and tissue homeostasis. Our data reveal how a PUM2-mediated layer of post-transcriptional regulation links altered Mff translation to mitochondrial dynamics and mitophagy, thereby mediating age-related mitochondrial dysfunctions.
Assuntos
Envelhecimento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Mitofagia , Proteínas de Ligação a RNA/metabolismo , Fatores Etários , Envelhecimento/genética , Envelhecimento/patologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Feminino , Células HEK293 , Células HeLa , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/patologia , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Regulação para CimaRESUMO
Junctin is a transmembrane protein of striated muscles, located at the junctional sarcoplasmic reticulum (SR). It is characterized by a luminal C-terminal tail, through which it functionally interacts with calsequestrin and the ryanodine receptor (RyR). Interaction with calsequestrin was ascribed to the presence of stretches of charged amino acids (aa). However, the regions able to bind calsequestrin have not been defined in detail. We report here that, in non-muscle cells, junctin and calsequestrin assemble in long linear regions within the endoplasmic reticulum, mirroring the formation of calsequestrin polymers. In differentiating myotubes, the two proteins colocalize at triads, where they assemble with other proteins of the junctional SR. By performing GST pull-down assays with distinct regions of the junctin tail, we identified two KEKE motifs that can bind calsequestrin. In addition, stretches of charged aa downstream these motifs were found to also bind calsequestrin and the RyR. Deletion of even one of these regions impaired the ability of junctin to localize at the junctional SR, suggesting that interaction with other proteins at this site represents a key element in junctin targeting.
Assuntos
Proteínas de Ligação ao Cálcio , Calsequestrina , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Calsequestrina/genética , Oxigenases de Função Mista/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismoRESUMO
Tubular aggregate myopathy (TAM) is a rare myopathy characterized by muscle weakness and myalgia. Muscle fibers from TAM patients show characteristic accumulation of membrane tubules that contain proteins from the sarcoplasmic reticulum (SR). Gain-of-function mutations in STIM1 and ORAI1, the key proteins participating in the Store-Operated Ca2+ Entry (SOCE) mechanism, were identified in patients with TAM. Recently, the CASQ1 gene was also found to be mutated in patients with TAM. CASQ1 is the main Ca2+ buffer of the SR and a negative regulator of SOCE. Previous characterization of CASQ1 mutants in non-muscle cells revealed that they display altered Ca2+dependent polymerization, reduced Ca2+storage capacity and alteration in SOCE inhibition. We thus aimed to assess how mutations in CASQ1 affect calcium regulation in skeletal muscles, where CASQ1 is naturally expressed. We thus expressed CASQ1 mutants in muscle fibers from Casq1 knockout mice, which provide a valuable model for studying the Ca2+ storage capacity of TAM-associated mutants. Moreover, since Casq1 knockout mice display a constitutively active SOCE, the effect of CASQ1 mutants on SOCE inhibition can be also properly examined in fibers from these mice. Analysis of intracellular Ca2+ confirmed that CASQ1 mutants have impaired ability to store Ca2+and lose their ability to inhibit skeletal muscle SOCE; this is in agreement with the evidence that alterations in Ca2+entry due to mutations in either STIM1, ORAI1 or CASQ1 represents a hallmark of TAM.
RESUMO
Aging is a complex and time-dependent decline in physiological function that affects most organisms, leading to increased risk of age-related diseases. Investigating the molecular underpinnings of aging is crucial to identify geroprotectors, precisely quantify biological age, and propose healthy longevity approaches. This review explores pathways that are currently being investigated as intervention targets and aging biomarkers spanning molecular, cellular, and systemic dimensions. Interventions that target these hallmarks may ameliorate the aging process, with some progressing to clinical trials. Biomarkers of these hallmarks are used to estimate biological aging and risk of aging-associated disease. Utilizing aging biomarkers, biological aging clocks can be constructed that predict a state of abnormal aging, age-related diseases, and increased mortality. Biological age estimation can therefore provide the basis for a fine-grained risk stratification by predicting all-cause mortality well ahead of the onset of specific diseases, thus offering a window for intervention. Yet, despite technological advancements, challenges persist due to individual variability and the dynamic nature of these biomarkers. Addressing this requires longitudinal studies for robust biomarker identification. Overall, utilizing the hallmarks of aging to discover new drug targets and develop new biomarkers opens new frontiers in medicine. Prospects involve multi-omics integration, machine learning, and personalized approaches for targeted interventions, promising a healthier aging population.
Assuntos
Envelhecimento , Relógios Biológicos , Biomarcadores , Longevidade , Humanos , Longevidade/fisiologia , Envelhecimento/metabolismo , Animais , Envelhecimento Saudável/metabolismoRESUMO
Alzheimer's disease is a common and devastating disease characterized by aggregation of the amyloid-ß peptide. However, we know relatively little about the underlying molecular mechanisms or how to treat patients with Alzheimer's disease. Here we provide bioinformatic and experimental evidence of a conserved mitochondrial stress response signature present in diseases involving amyloid-ß proteotoxicity in human, mouse and Caenorhabditis elegans that involves the mitochondrial unfolded protein response and mitophagy pathways. Using a worm model of amyloid-ß proteotoxicity, GMC101, we recapitulated mitochondrial features and confirmed that the induction of this mitochondrial stress response was essential for the maintenance of mitochondrial proteostasis and health. Notably, increasing mitochondrial proteostasis by pharmacologically and genetically targeting mitochondrial translation and mitophagy increases the fitness and lifespan of GMC101 worms and reduces amyloid aggregation in cells, worms and in transgenic mouse models of Alzheimer's disease. Our data support the relevance of enhancing mitochondrial proteostasis to delay amyloid-ß proteotoxic diseases, such as Alzheimer's disease.
Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Homeostase , Mitocôndrias/metabolismo , Proteostase , Doença de Alzheimer/genética , Animais , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Homeostase/efeitos dos fármacos , Humanos , Masculino , Memória/fisiologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Mitofagia/genética , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Fosforilação Oxidativa , Agregação Patológica de Proteínas/tratamento farmacológico , Biossíntese de Proteínas/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Compostos de Piridínio , Resposta a Proteínas não Dobradas/genéticaRESUMO
INTRODUCTION: NAGLU encodes N-acetyl-alpha-glucosaminidase, an enzyme that degrades heparan sulfate. Biallelic NAGLU mutations cause mucopolysaccharidosis IIIB, a severe childhood-onset neurodegenerative disease, while monoallelic mutations are associated to late-onset, dominantly inherited painful sensory neuropathy. However, to date, only one family with a dominant NAGLU-related neuropathy has been described. CASE REPORT: Here we describe a patient with early-onset motor polyneuropathy harboring a novel monoallelic NAGLU mutation. We found reduced NAGLU enzymatic activity thus corroborating the pathogenic role of the new variant. DISCUSSION: Our report represents the second ever described case with dominant NAGLU-related neuropathy and the first case with early-onset motor symptoms. We underlie the importance of a thorough clinical description of this probably underestimated new clinical entity.
Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Mucopolissacaridose III , Doenças Neurodegenerativas , Doenças do Sistema Nervoso Periférico , Polineuropatias , Humanos , Criança , Mucopolissacaridose III/diagnóstico , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Polineuropatias/genética , Mutação/genéticaRESUMO
Two likely causative mutations in the RYR1 gene were identified in two patients with myopathy with tubular aggregates, but no evidence of cores or core-like pathology on muscle biopsy. These patients were clinically evaluated and underwent routine laboratory investigations, electrophysiologic tests, muscle biopsy and muscle magnetic resonance imaging (MRI). They reported stiffness of the muscles following sustained activity or cold exposure and had serum creatine kinase elevation. The identified RYR1 mutations (p.Thr2206Met or p.Gly2434Arg, in patient 1 and patient 2, respectively) were previously identified in individuals with malignant hyperthermia susceptibility and are reported as causative according to the European Malignant Hyperthermia Group rules. To our knowledge, these data represent the first identification of causative mutations in the RYR1 gene in patients with tubular aggregate myopathy and extend the spectrum of histological alterations caused by mutation in the RYR1 gene.
Assuntos
Hipertermia Maligna , Miopatias Congênitas Estruturais , Humanos , Hipertermia Maligna/genética , Hipertermia Maligna/patologia , Músculo Esquelético/patologia , Mutação/genética , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genéticaRESUMO
Mitochondria-the intracellular powerhouse in which nutrients are converted into energy in the form of ATP or heat-are highly dynamic, double-membraned organelles that harness a plethora of cellular functions that sustain energy metabolism and homeostasis. Exciting new discoveries now indicate that the maintenance of this ever changing and functionally pleiotropic organelle is particularly relevant in terminally differentiated cells that are highly dependent on aerobic metabolism. Given the central role in maintaining metabolic and physiological homeostasis, dysregulation of the mitochondrial network might therefore confer a potentially devastating vulnerability to high-energy requiring cell types, contributing to a broad variety of hereditary and acquired diseases. In this Review, we highlight the biological functions of mitochondria-localized enzymes from the perspective of understanding-and potentially reversing-the pathophysiology of inherited disorders affecting the homeostasis of the mitochondrial network and cellular metabolism. Using methylmalonic acidemia as a paradigm of complex mitochondrial dysfunction, we discuss how mitochondrial directed-signaling circuitries govern the homeostasis and physiology of specialized cell types and how these may be disturbed in disease. This Review also provides a critical analysis of affected tissues, potential molecular mechanisms, and novel cellular and animal models of methylmalonic acidemia which are being used to develop new therapeutic options for this disease. These insights might ultimately lead to new therapeutics, not only for methylmalonic acidemia, but also for other currently intractable mitochondrial diseases, potentially transforming our ability to regulate homeostasis and health.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Mitofagia/fisiologia , Animais , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Humanos , Organelas/metabolismo , Transdução de Sinais/fisiologiaRESUMO
In adult skeletal muscles, 2 junctophilin isoforms (JPH1 and JPH2) tether the sarcoplasmic reticulum (SR) to transverse tubule (T-tubule) membranes, generating stable membrane contact sites known as triads. JPHs are anchored to the membrane of the SR by a C-terminal transmembrane domain (TMD) and bind the T-tubule membrane through their cytosolic N-terminal region, which contains 8 lipid-binding (MORN) motifs. By combining expression of GFP-JPH1 deletion mutants in skeletal muscle fibers with in vitro biochemical experiments, we investigated the molecular determinants of JPH1 recruitment at triads in adult skeletal muscle fibers. We found that MORN motifs bind PI(4,5)P2 in the sarcolemma, but do not mediate the selective localization of JPH1 at the T-tubule compartment of triads. On the contrary, fusion proteins containing only the TMD of JPH1 were able to localize at the junctional SR compartment of the triad. Bimolecular fluorescence complementation experiments indicated that the TMD of JPH1 can form dimers, suggesting that the observed localization at triads may result from dimerization with the TMDs of resident JPH1. A second domain, capable of mediating homo- and heterodimeric interactions between JPH1 and JPH2 was identified in the cytosolic region. FRAP experiments revealed that removal of either one of these 2 domains in JPH1 decreases the association of the resulting mutant proteins with triads. Altogether, these results suggest that the ability to establish homo- and heterodimeric interactions with resident JPHs may support the recruitment and stability of newly synthesized JPHs at triads in adult skeletal muscle fibers.
Assuntos
Proteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Sarcolema/metabolismo , Motivos de Aminoácidos , Animais , Humanos , Proteínas de Membrana/genética , Camundongos , Proteínas Musculares/genética , Mutação , Domínios Proteicos , Ratos , Ratos Sprague-Dawley , Sarcolema/genéticaRESUMO
Obscurin is a giant sarcomeric protein expressed in striated muscles known to establish several interactions with other proteins of the sarcomere, but also with proteins of the sarcoplasmic reticulum and costameres. Here, we report experiments aiming to better understand the contribution of obscurin to skeletal muscle fibers, starting with a detailed characterization of the diaphragm muscle function, which we previously reported to be the most affected muscle in obscurin (Obscn) KO mice. Twitch and tetanus tension were not significantly different in the diaphragm of WT and Obscn KO mice, while the time to peak (TTP) and half relaxation time (HRT) were prolonged. Differences in force-frequency and force-velocity relationships and an enhanced fatigability are observed in an Obscn KO diaphragm with respect to WT controls. Voltage clamp experiments show that a sarcoplasmic reticulum's Ca2+ release and SERCA reuptake rates were decreased in muscle fibers from Obscn KO mice, suggesting that an impairment in intracellular Ca2+ dynamics could explain the observed differences in the TTP and HRT in the diaphragm. In partial contrast with previous observations, Obscn KO mice show a normal exercise tolerance, but fiber damage, the altered sarcomere ultrastructure and M-band disarray are still observed after intense exercise.
Assuntos
Cálcio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Sarcômeros/metabolismo , Animais , Anquirinas/metabolismo , Conectina/metabolismo , Conectina/fisiologia , Masculino , Camundongos , Camundongos Knockout , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Condicionamento Físico Animal , Proteínas Serina-Treonina Quinases/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Sarcômeros/fisiologia , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismoRESUMO
Mitochondrial stress requires timely intervention to prevent mitochondrial and cellular dysfunction. Re-establishing the correct protein homeostasis is crucial for coping with mitochondrial stress and maintaining cellular homeostasis. The best-characterized adaptive pathways for mitochondrial stress involve a signal originating from stressed mitochondria that triggers a nuclear response. However, recent findings have shown that mitochondrial stress also affects a complex network of protein homeostasis pathways in the cytosol. We review how mitochondrial dysregulation affects cytosolic proteostasis by regulating the quantity and quality of protein synthesis, protein stability, and protein degradation, leading to an integrated regulation of cellular metabolism and proliferation. This mitochondria to cytosol network extends the current model of the mitochondrial stress response, with potential applications in the treatment of mitochondrial disease.
Assuntos
Citosol/metabolismo , Homeostase , Mitocôndrias/metabolismo , Proteínas/metabolismo , Estresse Fisiológico , Animais , HumanosRESUMO
Mitochondria are essential organelles for many aspects of cellular homeostasis, including energy harvesting through oxidative phosphorylation. Alterations of mitochondrial function not only impact on cellular metabolism but also critically influence whole-body metabolism, health, and life span. Diseases defined by mitochondrial dysfunction have expanded from rare monogenic disorders in a strict sense to now also include many common polygenic diseases, including metabolic, cardiovascular, neurodegenerative, and neuromuscular diseases. This has led to an intensive search for new therapeutic and preventive strategies aimed at invigorating mitochondrial function by exploiting key components of mitochondrial biogenesis, redox metabolism, dynamics, mitophagy, and the mitochondrial unfolded protein response. As such, new findings linking mitochondrial function to the progression or outcome of this ever-increasing list of diseases has stimulated the discovery and development of the first true mitochondrial drugs, which are now entering the clinic and are discussed in this review.
Assuntos
Mitocôndrias/fisiologia , Doenças Mitocondriais/fisiopatologia , Animais , Progressão da Doença , Humanos , Biogênese de OrganelasRESUMO
Calsequestrin (CASQ) is the most abundant Ca2+ binding protein localized in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. The genome of vertebrates contains two genes, CASQ1 and CASQ2. CASQ1 and CASQ2 have a high level of homology, but show specific patterns of expression. Fast-twitch skeletal muscle fibers express only CASQ1, both CASQ1 and CASQ2 are present in slow-twitch skeletal muscle fibers, while CASQ2 is the only protein present in cardiomyocytes. Depending on the intraluminal SR Ca2+ levels, CASQ monomers assemble to form large polymers, which increase their Ca2+ binding ability. CASQ interacts with triadin and junctin, two additional SR proteins which contribute to localize CASQ to the junctional region of the SR (j-SR) and also modulate CASQ ability to polymerize into large macromolecular complexes. In addition to its ability to bind Ca2+ in the SR, CASQ appears also to be able to contribute to regulation of Ca2+ homeostasis in muscle cells. Both CASQ1 and CASQ2 are able to either activate and inhibit the ryanodine receptors (RyRs) calcium release channels, likely through their interactions with junctin and triadin. Additional evidence indicates that CASQ1 contributes to regulate the mechanism of store operated calcium entry in skeletal muscle via a direct interaction with the Stromal Interaction Molecule 1 (STIM1). Mutations in CASQ2 and CASQ1 have been identified, respectively, in patients with catecholamine-induced polymorphic ventricular tachycardia and in patients with some forms of myopathy. This review will highlight recent developments in understanding CASQ1 and CASQ2 in health and diseases.
Assuntos
Cálcio , Calsequestrina , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio , Calsequestrina/genética , Humanos , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina , Retículo Sarcoplasmático/metabolismoRESUMO
The evolutionarily conserved nature of the few well-known anti-aging interventions that affect lifespan, such as caloric restriction, suggests that aging-related research in model organisms is directly relevant to human aging. Since human lifespan is a complex trait, a systems-level approach will contribute to a more comprehensive understanding of the underlying aging landscape. Here, we integrate evolutionary and functional information of normal aging across human and model organisms at three levels: gene-level, process-level, and network-level. We identify evolutionarily conserved modules of normal aging across diverse taxa, and notably show proteostasis to be conserved in normal aging. Additionally, we find that mechanisms related to protein quality control network are enriched for genes harboring genetic variants associated with 22 age-related human traits and associated to caloric restriction. These results demonstrate that a systems-level approach, combined with evolutionary conservation, allows the detection of candidate aging genes and pathways relevant to human normal aging.
Assuntos
Envelhecimento/metabolismo , Proteostase , Adulto , Idoso , Envelhecimento/genética , Animais , Caenorhabditis elegans , Restrição Calórica , Biologia Computacional , Drosophila melanogaster , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Marcadores Genéticos , Humanos , Longevidade/genética , Longevidade/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Proteostase/genética , Especificidade da Espécie , Adulto JovemRESUMO
Charcot-Marie-Tooth (CMT) disease type 2 is a genetically heterogeneous group of inherited neuropathies characterized by motor and sensory deficits as a result of peripheral axonal degeneration. We recently reported a frameshift (FS) mutation in the Really Interesting New Gene finger (RING) domain of LRSAM1 (c.2121_2122dup, p.Leu708Argfs) that encodes an E3 ubiquitin ligase, as the cause of axonal-type CMT (CMT2P). However, the frequency of LRSAM1 mutations in CMT2 and the functional basis for their association with disease remains unknown. In this study, we evaluated LRSAM1 mutations in two large Dutch cohorts. In the first cohort (n = 107), we sequenced the full LRSAM1 coding exons in an unbiased fashion, and, in the second cohort (n = 468), we specifically sequenced the last, RING-encoding exon in individuals where other CMT-associated genes had been ruled out. We identified a novel LRSAM1 missense mutation (c.2120C > T, p.Pro707Leu) mapping to the RING domain. Based on our genetic analysis, the occurrence of pathogenic LRSAM1 mutations is estimated to be rare. Functional characterization of the FS, the identified missense mutation, as well as of another recently reported pathogenic missense mutation (c.2081G > A, p.Cys694Tyr), revealed that in vitro ubiquitylation activity was largely abrogated. We demonstrate that loss of the E2-E3 interaction that is an essential prerequisite for supporting ubiquitylation of target substrates, underlies this reduced ubiquitylation capacity. In contrast, LRSAM1 dimerization and interaction with the bona fide target TSG101 were not disrupted. In conclusion, our study provides further support for the role of LRSAM1 in CMT and identifies LRSAM1-mediated ubiquitylation as a common determinant of disease-associated LRSAM1 mutations.
Assuntos
Doença de Charcot-Marie-Tooth/genética , Ubiquitina-Proteína Ligases/genética , Axônios/metabolismo , Axônios/fisiologia , Sequência de Bases , Doença de Charcot-Marie-Tooth/metabolismo , Éxons , Feminino , Mutação da Fase de Leitura , Testes Genéticos , Humanos , Masculino , Mutação , Mutação de Sentido Incorreto/genética , Países Baixos , Domínios Proteicos , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
Objective- The E3 ubiquitin ligase IDOL (inducible degrader of the LDLR [LDL (low-density lipoprotein) receptor]) is a post-transcriptional regulator of LDLR abundance. Model systems and human genetics support a role for IDOL in regulating circulating LDL levels. Whether IDOL plays a broader metabolic role and affects development of metabolic syndrome-associated comorbidities is unknown. Approach and Results- We studied WT (wild type) and Idol(-/-) (Idol-KO) mice in 2 models: physiological aging and diet-induced obesity. In both models, deletion of Idol protected mice from metabolic dysfunction. On a Western-type diet, Idol loss resulted in decreased circulating levels of cholesterol, triglycerides, glucose, and insulin. This was accompanied by protection from weight gain in short- and long-term dietary challenges, which could be attributed to reduced hepatosteatosis and fat mass in Idol-KO mice. Although feeding and intestinal fat uptake were unchanged in Idol-KO mice, their brown adipose tissue was protected from lipid accumulation and had elevated expression of UCP1 (uncoupling protein 1) and TH (tyrosine hydroxylase). Indirect calorimetry indicated a marked increase in locomotion and suggested a trend toward increased cumulative energy expenditure and fat oxidation. An increase in in vivo clearance of reconstituted lipoprotein particles in Idol-KO mice may sustain this energetic demand. In the BXD mouse genetic reference population, hepatic Idol expression correlates with multiple metabolic parameters, thus providing support for findings in the Idol-KO mice. Conclusions- Our study uncovers an unrecognized role for Idol in regulation of whole body metabolism in physiological aging and on a Western-type diet. These findings support Idol inhibition as a therapeutic strategy to target multiple metabolic syndrome-associated comorbidities.
Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Fígado/enzimologia , Síndrome Metabólica/prevenção & controle , Obesidade/prevenção & controle , Ubiquitina-Proteína Ligases/deficiência , Adipogenia , Tecido Adiposo Marrom/enzimologia , Adiposidade , Fatores Etários , Envelhecimento , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Colesterol/sangue , Modelos Animais de Doenças , Feminino , Insulina/sangue , Locomoção , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/enzimologia , Síndrome Metabólica/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Obesidade/sangue , Obesidade/enzimologia , Obesidade/genética , Triglicerídeos/sangue , Tirosina 3-Mono-Oxigenase/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteína Desacopladora 1/metabolismoRESUMO
Small Ankyrins (sAnk1) are muscle-specific isoforms generated by the Ank1 gene that participate in the organization of the sarcoplasmic reticulum (SR) of striated muscles. Accordingly, the volume of SR tubules localized around the myofibrils is strongly reduced in skeletal muscle fibers of 4- and 10-month-old sAnk1 knockout (KO) mice, while additional structural alterations only develop with aging. To verify whether the lack of sAnk1 also alters intracellular Ca2+ handling, cytosolic Ca2+ levels were analyzed in stimulated skeletal muscle fibers from 4- and 10-month-old sAnk1 KO mice. The SR Ca2+ content was reduced in sAnk1 KO mice regardless of age. The amplitude of the Ca2+ transients induced by depolarizing pulses was decreased in myofibers of sAnk1 KO with respect to wild type (WT) fibers, while their voltage dependence was not affected. Furthermore, analysis of spontaneous Ca2+ release events (sparks) on saponin-permeabilized muscle fibers indicated that the frequency of sparks was significantly lower in fibers from 4-month-old KO mice compared to WT. Furthermore, both the amplitude and spatial spread of sparks were significantly smaller in muscle fibers from both 4- and 10-month-old KO mice compared to WT. These data suggest that the absence of sAnk1 results in an impairment of SR Ca2+ release, likely as a consequence of a decreased Ca2+ store due to the reduction of the SR volume in sAnk1 KO muscle fibers.
Assuntos
Anquirinas/metabolismo , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Anquirinas/genética , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Retículo Sarcoplasmático/genéticaRESUMO
RATIONALE: The low-density lipoprotein (LDL) receptor (LDLR) is a central determinant of circulating LDL-cholesterol and as such subject to tight regulation. Recent studies and genetic evidence implicate the inducible degrader of the LDLR (IDOL) as a regulator of LDLR abundance and of circulating levels of LDL-cholesterol in humans. Acting as an E3-ubiquitin ligase, IDOL promotes ubiquitylation and subsequent lysosomal degradation of the LDLR. Consequently, inhibition of IDOL-mediated degradation of the LDLR represents a potential strategy to increase hepatic LDL-cholesterol clearance. OBJECTIVE: To establish whether deubiquitylases counteract IDOL-mediated ubiquitylation and degradation of the LDLR. METHODS AND RESULTS: Using a genetic screening approach, we identify the ubiquitin-specific protease 2 (USP2) as a post-transcriptional regulator of IDOL-mediated LDLR degradation. We demonstrate that both USP2 isoforms, USP2-69 and USP2-45, interact with IDOL and promote its deubiquitylation. IDOL deubiquitylation requires USP2 enzymatic activity and leads to a marked stabilization of IDOL protein. Paradoxically, this also markedly attenuates IDOL-mediated degradation of the LDLR and the ability of IDOL to limit LDL uptake into cells. Conversely, loss of USP2 reduces LDLR protein in an IDOL-dependent manner and limits LDL uptake. We identify a tri-partite complex encompassing IDOL, USP2, and LDLR and demonstrate that in this context USP2 promotes deubiquitylation of the LDLR and prevents its degradation. CONCLUSIONS: Our findings identify USP2 as a novel regulator of lipoprotein clearance owing to its ability to control ubiquitylation-dependent degradation of the LDLR by IDOL.
Assuntos
LDL-Colesterol/metabolismo , Endopeptidases/metabolismo , Receptores de LDL/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Endopeptidases/genética , Estabilidade Enzimática , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Camundongos Knockout , Complexos Multienzimáticos , Ligação Proteica , Proteólise , Interferência de RNA , Receptores de LDL/genética , Transfecção , Ubiquitina Tiolesterase , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , UbiquitinaçãoRESUMO
RATIONALE: The (pro)renin receptor ([P]RR) interacts with (pro)renin at concentrations that are >1000× higher than observed under (patho)physiological conditions. Recent studies have identified renin-angiotensin system-independent functions for (P)RR related to its association with the vacuolar H(+)-ATPase. OBJECTIVE: To uncover renin-angiotensin system-independent functions of the (P)RR. METHODS AND RESULTS: We used a proteomics-based approach to purify and identify (P)RR-interacting proteins. This resulted in identification of sortilin-1 (SORT1) as a high-confidence (P)RR-interacting protein, a finding which was confirmed by coimmunoprecipitation of endogenous (P)RR and SORT1. Functionally, silencing (P)RR expression in hepatocytes decreased SORT1 and low-density lipoprotein (LDL) receptor protein abundance and, as a consequence, resulted in severely attenuated cellular LDL uptake. In contrast to LDL, endocytosis of epidermal growth factor or transferrin remained unaffected by silencing of the (P)RR. Importantly, reduction of LDL receptor and SORT1 protein abundance occurred in the absence of changes in their corresponding transcript level. Consistent with a post-transcriptional event, degradation of the LDL receptor induced by (P)RR silencing could be reversed by lysosomotropic agents, such as bafilomycin A1. CONCLUSIONS: Our study identifies a renin-angiotensin system-independent function for the (P)RR in the regulation of LDL metabolism by controlling the levels of SORT1 and LDL receptor.