Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 54(1): 101, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904195

RESUMO

Infectious bursal disease (IBD) is an avian viral disease caused in chickens by infectious bursal disease virus (IBDV). IBDV strains (Avibirnavirus genus, Birnaviridae family) exhibit different pathotypes, for which no molecular marker is available yet. The different pathotypes, ranging from sub-clinical to inducing immunosuppression and high mortality, are currently determined through a 10-day-long animal experiment designed to compare mortality and clinical score of the uncharacterized strain with references strains. Limits of this protocol lie within standardization and the extensive use of animal experimentation. The aim of this study was to establish a predictive model of viral pathotype based on a minimum number of early parameters measured during infection, allowing faster pathotyping of IBDV strains with improved ethics. We thus measured, at 2 and 4 days post-infection (dpi), the blood concentrations of various immune and coagulation related cells, the uricemia and the infectious viral load in the bursa of Fabricius of chicken infected under standardized conditions with a panel of viruses encompassing the different pathotypes of IBDV. Machine learning algorithms allowed establishing a predictive model of the pathotype based on early changes of the blood cell formula, whose accuracy reached 84.1%. Its accuracy to predict the attenuated and strictly immunosuppressive pathotypes was above 90%. The key parameters for this model were the blood concentrations of B cells, T cells, monocytes, granulocytes, thrombocytes and erythrocytes of infected chickens at 4 dpi. This predictive model could be a second option to traditional IBDV pathotyping that is faster, and more ethical.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Animais , Galinhas , Bolsa de Fabricius , Linfócitos B , Contagem de Células Sanguíneas/veterinária , Infecções por Birnaviridae/veterinária
2.
J Virol ; 95(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328313

RESUMO

Infectious bursal disease virus (IBDV), the best characterized member of the Birnaviridae family, is a highly relevant avian pathogen causing both acute and persistent infections in different avian hosts. Here, we describe the establishment of clonal, long-term, productive persistent IBDV infections in DF-1 chicken embryonic fibroblasts. Although virus yields in persistently-infected cells are exceedingly lower than those detected in acutely infected cells, the replication fitness of viruses isolated from persistently-infected cells is higher than that of the parental virus. Persistently-infected DF-1 and IBDV-cured cell lines derived from them do not respond to type I interferon (IFN). High-throughput genome sequencing revealed that this defect is due to mutations affecting the IFNα/ß receptor subunit 2 (IFNAR2) gene resulting in the expression of IFNAR2 polypeptides harbouring large C-terminal deletions that abolish the signalling capacity of IFNα/ß receptor complex. Ectopic expression of a recombinant chicken IFNAR2 gene efficiently rescues IFNα responsiveness. IBDV-cured cell lines derived from persistently infected cells exhibit a drastically enhanced susceptibility to establishing new persistent IBDV infections. Additionally, experiments carried out with human HeLa cells lacking the IFNAR2 gene fully recapitulate results obtained with DF-1 cells, exhibiting a highly enhanced capacity to both survive the acute IBDV infection phase and to support the establishment of persistent IBDV infections. Results presented here show that the inactivation of the JAK-STAT signalling pathway significantly reduces the apoptotic response induced by the infection, hence facilitating the establishment and maintenance of IBDV persistent infections.IMPORTANCE Members of the Birnaviridae family, including infectious bursal disease virus (IBDV), exhibit a dual behaviour, causing acute infections that are often followed by the establishment of life-long persistent asymptomatic infections. Indeed, persistently infected specimens might act as efficient virus reservoirs, hence potentially contributing to virus dissemination. Despite the key importance of this biological trait, information about mechanisms triggering IBDV persistency is negligible. Our report evidences the capacity of IBDV, a highly relevant avian pathogen, to establishing long-term, productive, persistent infections in both avian and human cell lines. Data presented here provide novel and direct evidence about the crucial role of type I IFNs on the fate of IBDV-infected cells and their contribution to controlling the establishment of IBDV persistent infections. The use of cell lines unable to respond to type I IFNs opens a promising venue to unveiling additional factors contributing to IBDV persistency.

3.
Avian Pathol ; 48(2): 121-134, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30556415

RESUMO

It is well established that the endothelium plays a prominent role in the pathogenesis of various infectious diseases in mammals. However, little is known about the role of endothelial cells (EC) as targets for avian pathogens and their contribution to the pathogenesis of infectious diseases in galliform birds. First, we explored the innate immune response of primary chicken aortic endothelial cells (pchAEC), obtained from 18-day-old embryos, to stimulation with pathogen-associated molecular patterns or recombinant chicken interferons (type I, II and III IFNs). In spite of the abundant expression of a number of innate immune receptors, marked cytokine responses to stimulation with pathogen-associated molecular patterns were only seen in pchAEC treated with the TLR3 agonist polyI:C (pI:C) and the MDA5 agonist liposome-complexed polyI:C (L-pI:C), as was assessed by quantitative PCR and luciferase-based IFN-I/NFκB reporter assays. Treatments of pchAEC with IFN-α, IFN-γ and IFN-λ resulted in STAT1-phosphorylation/activation, as was revealed by immunoblotting. Next, we demonstrated that pchAEC are susceptible to infection with a variety of poultry pathogens, including Marek's disease virus (MDV), infectious bursal disease virus (IBDV), avian pathogenic Escherichia coli (APEC) and Eimeria tenella. Our data highlight that chicken EC are potential targets for viral, bacterial and protozoan pathogens in gallinaceous poultry and may partake in the inflammatory and antimicrobial response. The pchAEC infection model used herein will allow further studies interrogating avian pathogen interactions with vascular EC. RESEARCH HIGHLIGHTS Use of a well-defined primary chicken aortic endothelial cell (pchAEC) culture model for studying avian host-pathogen interactions. pchAEC are responsive to innate immune stimulation with viral pathogen-associated molecular patterns and chicken type I, II and III interferons. pchAEC are susceptible to infections with economically important poultry pathogens, including MDV, IBDV, APEC and Eimeria tenella.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Interferons/metabolismo , Doenças das Aves Domésticas/imunologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Embrião de Galinha , Galinhas , Células Endoteliais/imunologia , Endotélio/imunologia , Feminino , Inflamação/microbiologia , Inflamação/parasitologia , Inflamação/veterinária , Interferons/genética , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/parasitologia
4.
Avian Pathol ; 48(3): 245-254, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30663339

RESUMO

Infectious bursal disease virus (IBDV) is the causative agent of a highly contagious immunosuppressive disease affecting young chickens. The recently described "distinct IBDV" (dIBDV) genetic lineage encompasses a group of worldwide distributed strains that share conserved genetic characteristics in both genome segments making them unique within IBDV strains. Phenotypic characterization of these strains is scarce and limited to Asiatic and European strains collected more than 15 years ago. The present study aimed to assess the complete and comprehensive phenotypic characterization of a recently collected South American dIBDV strain (1/chicken/URY/1302/16). Genetic analyses of both partial genome segments confirmed that this strain belongs to the dIBDV genetic lineage and that it is not a reassortant. Antigenic analysis with monoclonal antibodies indicated that this strain has a particular antigenic profile, similar to that obtained in a dIBDV strain from Europe (80/GA), which differs from those previously found in the traditional classic, variant and very virulent strains. Chickens infected with the South American dIBDV strain showed subclinical infections but had a marked bursal atrophy. Further analysis using Newcastle disease virus-immunized chickens, previously infected with the South American and European dIBDV strains, demonstrated their severe immunosuppressive effect. These results indicate that dIBDV strains currently circulating in South America can severely impair the immune system of chickens, consequently affecting the local poultry industry. Our study provides new insights into the characteristics and variability of this global genetic lineage and is valuable to determine whether specific control measures are required for the dIBDV lineage. Research Highlights A South American strain of the dIBDV lineage was phenotypically characterized. The strain produced subclinical infections with a marked bursal atrophy. Infected chickens were severely immunosuppressed. The dIBDV strains are antigenically divergent from other IBDV lineages.


Assuntos
Infecções por Birnaviridae/veterinária , Galinhas/virologia , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/imunologia , Doenças das Aves Domésticas/virologia , Animais , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , Galinhas/imunologia , Genótipo , Imunogenicidade da Vacina , Terapia de Imunossupressão/veterinária , Vírus da Doença Infecciosa da Bursa/isolamento & purificação , Vírus da Doença Infecciosa da Bursa/patogenicidade , Fenótipo , Doenças das Aves Domésticas/imunologia , Virulência
5.
Avian Pathol ; 47(2): 179-188, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29039212

RESUMO

Infectious bursal disease virus (IBDV) is a Birnaviridae family member of economic importance for poultry. This virus infects and destroys developing B lymphocytes in the cloacal bursa, resulting in a potentially fatal or immunosuppressive disease in chickens. Naturally occurring viruses and many vaccine strains are not able to grow in in vitro systems without prior adaptation, which often affects viral properties such as virulence. Primary bursal cells, which are the main target cells of lymphotropic IBDV in vivo, may represent an attractive system for the study of IBDV. Unfortunately, bursal cells isolated from bursal follicles undergo apoptosis within hours following their isolation. Here, we demonstrate that ex vivo stimulation of bursal cells with phorbol 12-myristate 13-acetate maintains their viability long enough to allow IBDV replication to high titres. A wide range of field-derived or vaccine serotype 1 IBDV strains could be titrated in these phorbol 12-myristate 13-acetate -stimulated bursal cells and furthermore were permissive for replication of non-cell-culture-adapted viruses. These cells also supported multistep replication experiments and flow cytometry analysis of infection. Ex vivo-stimulated bursal cells therefore offer a promising tool in the study of IBDV.


Assuntos
Bolsa de Fabricius/citologia , Galinhas , Vírus da Doença Infecciosa da Bursa/fisiologia , Cultura de Vírus/veterinária , Animais , Sobrevivência Celular , Células Cultivadas , Acetato de Tetradecanoilforbol/farmacologia , Cultura de Vírus/métodos
6.
Avian Pathol ; 46(1): 19-27, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27400223

RESUMO

Infectious bursal disease virus (IBDV, family Birnaviridae) is a bi-segmented double-stranded RNA virus for which two serotypes are described. Serotype 1 replicates in the bursa of Fabricius and causes an immunosuppressive and potentially fatal disease in young chickens. Serotype 2 is apathogenic in poultry species. Up to now, only one natural event of interserotypic reassortment has been described after the introduction of very virulent IBDV (vvIBDV) in the USA in 2009, resulting in an IBDV strain with its segment A related to vvIBDV and its segment B related to US serotype 2 strain OH. Here, we present the first European isolate illustrative of interserotypic reassortment. The reassorting isolate, named 100056, exhibits a genomic segment A typical of current European vvIBDV but a segment B close to European serotype 2 viruses, supporting an origin distinct from US strains. When inoculated into SPF chickens, isolate 100056 induced mild clinical signs in the absence of mortality but caused a severe bursal atrophy, which strongly suggests an immunosuppressive potential. These results illustrate that interserotypic reassortment is another mechanism that can create IBDV strains with a modified acute pathogenicity. As a consequence, and for a more precise inference of the possible phenotype, care should be taken that the molecular identification of IBDV strains is targeted to both genome segments.


Assuntos
Infecções por Birnaviridae/veterinária , Galinhas/virologia , Genoma Viral/genética , Vírus da Doença Infecciosa da Bursa/imunologia , Doenças das Aves Domésticas/virologia , Vírus Reordenados/imunologia , Animais , Infecções por Birnaviridae/virologia , Bolsa de Fabricius/virologia , Evolução Molecular , França , Genômica , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/isolamento & purificação , Vírus da Doença Infecciosa da Bursa/patogenicidade , Fenótipo , Filogenia , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/patogenicidade , Análise de Sequência de RNA , Sorogrupo , Organismos Livres de Patógenos Específicos , Virulência
7.
J Virol ; 88(5): 2835-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371053

RESUMO

Interferons (IFNs) are essential components of the antiviral defense system of vertebrates. In mammals, functional receptors for type III IFN (lambda interferon [IFN-λ]) are found mainly on epithelial cells, and IFN-λ was demonstrated to play a crucial role in limiting viral infections of mucosal surfaces. To determine whether IFN-λ plays a similar role in birds, we produced recombinant chicken IFN-λ (chIFN-λ) and we used the replication-competent retroviral RCAS vector system to generate mosaic-transgenic chicken embryos that constitutively express chIFN-λ. We could demonstrate that chIFN-λ markedly inhibited replication of various virus strains, including highly pathogenic influenza A viruses, in ovo and in vivo, as well as in epithelium-rich tissue and cell culture systems. In contrast, chicken fibroblasts responded poorly to chIFN-λ. When applied in vivo to 3-week-old chickens, recombinant chIFN-λ strongly induced the IFN-responsive Mx gene in epithelium-rich organs, such as lungs, tracheas, and intestinal tracts. Correspondingly, these organs were found to express high transcript levels of the putative chIFN-λ receptor alpha chain (chIL28RA) gene. Transfection of chicken fibroblasts with a chIL28RA expression construct rendered these cells responsive to chIFN-λ treatment, indicating that receptor expression determines cell type specificity of IFN-λ action in chickens. Surprisingly, mosaic-transgenic chickens perished soon after hatching, demonstrating a detrimental effect of constitutive chIFN-λ expression. Our data highlight fundamental similarities between the IFN-λ systems of mammals and birds and suggest that type III IFN might play a role in defending mucosal surfaces against viral intruders in most if not all vertebrates.


Assuntos
Antivirais/farmacologia , Interferons/farmacologia , Proteínas Recombinantes/farmacologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Linhagem Celular , Embrião de Galinha , Galinhas , Resistência à Doença/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Letais , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/patogenicidade , Influenza Aviária/tratamento farmacológico , Influenza Aviária/virologia , Interferons/genética , Interferons/metabolismo , Dados de Sequência Molecular , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Receptores de Citocinas/química , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Técnicas de Cultura de Tecidos , Transcrição Gênica/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
8.
Virologie (Montrouge) ; 18(2): 105-116, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065874

RESUMO

Mx proteins are interferon-induced members of the dynamin superfamily of large GTPases. They inhibit a wide range of viruses by blocking early steps in the viral replication cycle. Recent evidence suggests that the human MxA (MX1) protein provides a barrier against zoonotic introduction of influenza A viruses into the human population, whereas the related human MxB (MX2) protein is an inhibitor of HIV-1 and other primate lentiviruses. Structural and functional data suggest that Mx proteins target the nucleocapsids of Mx-sensitive viruses and thereby inhibit their transcriptional and replicative function. Evolutionary studies revealed that Mx GTPases are subject to recurrent arms races with viral targets that shape their specificity determinants while the overall architecture is conserved. Here we briefly review the most salient features of Mx GTPases and their antiviral action as molecular machines.

9.
Sci Total Environ ; 943: 173648, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38825204

RESUMO

The emergence of SARS-CoV-2 has heightened the need to evaluate the detection of enveloped viruses in the environment, particularly in wastewater, within the context of wastewater-based epidemiology. The studies published over the past 80 years focused primarily on non-enveloped viruses due to their ability to survive longer in environmental matrices such as wastewater or sludge compared to enveloped viruses. However, different enveloped viruses survive in the environment for different lengths of time. Therefore, it is crucial to be prepared to assess the potential infectious risk that may arise from future emerging enveloped viruses. This will require appropriate tools, notably suitable viral concentration methods that do not compromise virus infectivity. This review has a dual purpose: first, to gather all the available literature on the survival of infectious enveloped viruses, specifically at different pH and temperature conditions, and in contact with detergents; second, to select suitable concentration methods for evaluating the infectivity of these viruses in wastewater and sludge. The methodology used in this data collection review followed the systematic approach outlined in the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. Concentration methods cited in the data gathered are more tailored towards detecting the enveloped viruses' genome. There is a lack of suitable methods for detecting infectious enveloped viruses in wastewater and sludge. Ultrafiltration, ultracentrifugation, and polyethylene glycol precipitation methods, under specific/defined conditions, appear to be relevant approaches. Further studies are necessary to validate reliable concentration methods for detecting infectious enveloped viruses. The choice of culture system is also crucial for detection sensitivity. The data also show that the survival of infectious enveloped viruses, though lower than that of non-enveloped ones, may enable environmental transmission. Experimental data on a wide range of enveloped viruses is required due to the variability in virus persistence in the environment.


Assuntos
Esgotos , Águas Residuárias , Esgotos/virologia , Águas Residuárias/virologia , SARS-CoV-2 , Vírus/isolamento & purificação , COVID-19/transmissão
10.
J Gen Virol ; 94(Pt 1): 50-58, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23052391

RESUMO

Highly pathogenic avian influenza (HPAI) H7N1 viruses caused a series of epizootics in Italy between 1999 and 2001. The emergence of these HPAI viruses coincided with the deletion of the six amino acids R(225)VESEV(230) at the C terminus of NS1. In order to assess how the truncation of NS1 affected virus replication, we used reverse genetics to generate a wild-type low-pathogenic avian influenza (LPAI) H7N1 virus with a 230aa NS1 (H7N1(230)) and a mutant virus with a truncated NS1 (H7N1(224)). The 6aa truncation had no impact on virus replication in duck or chicken cells in vitro. The H7N1(230) and H7N1(224) viruses also replicated to similar levels and induced similar immune responses in ducks or chickens. No significant histological lesions were detected in infected ducks, regardless of the virus inoculated. However, in chickens, the H7N1(230) virus induced a more severe interstitial pneumonia than did the H7N1(224) virus. These findings indicate that the C-terminal extremity of NS1, including the PDZ-binding motif ESEV, is dispensable for efficient replication of an LPAI virus in ducks and chickens, even though it may increase virulence in chickens, as revealed by the intensity of the histological lesions.


Assuntos
Galinhas/virologia , Patos/virologia , Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A Subtipo H7N1/metabolismo , Influenza Aviária/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Embrião de Galinha , Galinhas/imunologia , Patos/imunologia , Vírus da Influenza A Subtipo H7N1/imunologia , Influenza Aviária/genética , Influenza Aviária/imunologia , Influenza Aviária/virologia , Deleção de Sequência/genética , Deleção de Sequência/imunologia , Proteínas não Estruturais Virais/imunologia , Replicação Viral/genética , Replicação Viral/imunologia
11.
Virus Res ; 323: 198999, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36379388

RESUMO

The antigenic characterization of IBDV, a virus that causes an immunosuppressive disease in young chickens, has been historically addressed using cross virus neutralization (VN) assay and antigen-capture enzyme-linked immunosorbent (AC-ELISA). However, VN assay has been usually carried out either in specific antibody negative embryonated eggs, for non-cell culture adapted strains, which is tedious, or on chicken embryo fibroblasts (CEF), which requires virus adaptation to cell culture. AC-ELISA has provided crucial information about IBDV antigenicity, but this information is limited to the epitopes included in the tested panel with a lack of information of overall antigenic view. The present work aimed at overcoming those technical limitations and providing an extensive antigenic landscape based on original cross VN assays employing primary chicken B cells, where no previous IBDV adaptation is required. Sixteen serotype 1 IBDV viruses, comprising both reference strains and documented antigenic variants were tested against eleven chicken post-infectious sera. The VN data were analysed by antigenic cartography, a method which enables reliable high-resolution quantitative and visual interpretation of large binding assay datasets. The resulting antigenic cartography revealed i) the existence of several antigenic clusters of IBDV, ii) high antigenic relatedness between some genetically unrelated viruses, iii) a highly variable contribution to global antigenicity of previously identified individual epitopes and iv) broad reactivity of chicken sera raised against antigenic variants. This study provides an overall view of IBDV antigenic diversity. Implementing this approach will be instrumental to follow the evolution of IBDV antigenicity and control the disease.

12.
Emerg Microbes Infect ; 12(2): 2272644, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847060

RESUMO

Immature feathers are known replication sites for high pathogenicity avian influenza viruses (HPAIVs) in poultry. However, it is unclear whether feathers play an active role in viral transmission. This study aims to investigate the contribution of the feather epithelium to the dissemination of clade 2.3.4.4b goose/Guangdong/1996 lineage H5 HPAIVs in the environment, based on natural and experimental infections of domestic mule and Muscovy ducks. During the 2016-2022 outbreaks, H5 HPAIVs exhibited persistent and marked feather epitheliotropism in naturally infected commercial ducks. Infection of the feather epithelium resulted in epithelial necrosis and disruption, as well as the production and environmental shedding of infectious virions. Viral and feather antigens colocalized in dust samples obtained from poultry barns housing naturally infected birds. In summary, the feather epithelium contributes to viral replication, and it is a likely source of environmental infectious material. This underestimated excretion route could greatly impact the ecology of HPAIVs, facilitating airborne and preening-related infections within a flock, and promoting prolonged viral infectivity and long-distance viral transmission between poultry farms.


Assuntos
Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Animais , Patos , Plumas , Virulência , Aves Domésticas , Epitélio
13.
J Clin Microbiol ; 50(9): 2881-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718944

RESUMO

Adaptation of avian influenza viruses (AIVs) from waterfowl to domestic poultry with a deletion in the neuraminidase (NA) stalk has already been reported. The way the virus undergoes this evolution, however, is thus far unclear. We address this question using pyrosequencing of duck and turkey low-pathogenicity AIVs. Ducks and turkeys were sampled at the very beginning of an H6N1 outbreak, and turkeys were swabbed again 8 days later. NA stalk deletions were evidenced in turkeys by Sanger sequencing. To further investigate viral evolution, 454 pyrosequencing was performed: for each set of samples, up to 41,500 reads of ca. 400 bp were generated and aligned. Genetic polymorphisms between duck and turkey viruses were tracked on the whole genome. NA deletion was detected in less than 2% of reads in duck feces but in 100% of reads in turkey tracheal specimens collected at the same time. Further variations in length were observed in NA from turkeys 8 days later. Similarly, minority mutants emerged on the hemagglutinin (HA) gene, with substitutions mostly in the receptor binding site on the globular head. These critical changes suggest a strong evolutionary pressure in turkeys. The increasing performances of next-generation sequencing technologies should enable us to monitor the genomic diversity of avian influenza viruses and early emergence of potentially pathogenic variants within bird flocks. The present study, based on 454 pyrosequencing, suggests that NA deletion, an example of AIV adaptation from waterfowl to domestic poultry, occurs by selection rather than de novo emergence of viral mutants.


Assuntos
Surtos de Doenças , Evolução Molecular , Genoma Viral , Influenza Aviária/genética , Influenza Aviária/virologia , Neuraminidase/genética , Proteínas Virais/genética , Substituição de Aminoácidos , Animais , Patos , Hemaglutininas Virais/genética , Influenza Aviária/epidemiologia , Dados de Sequência Molecular , Mutação de Sentido Incorreto , RNA Viral/genética , Análise de Sequência de DNA , Deleção de Sequência , Perus , Estados Unidos/epidemiologia
14.
Front Vet Sci ; 9: 871549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558891

RESUMO

Immunosuppression in poultry production is a recurrent problem worldwide, and one of the major viral immunosuppressive agents is Infectious Bursal Disease Virus (IBDV). IBDV infections are mostly controlled by using live-attenuated vaccines. Live-attenuated Infectious Bursal Disease (IBD) vaccine candidates are classified as "mild," "intermediate," "intermediate-plus" or "hot" based on their residual immunosuppressive properties. The immunosuppression protocol described by the European Pharmacopoeia (Ph. Eur.) uses a lethal Newcastle Disease Virus (NDV) infectious challenge to measure the interference of a given IBDV vaccine candidate on NDV vaccine immune response. A Ph. Eur.-derived protocol was thus implemented to quantify immunosuppression induced by one mild, two intermediate, and four intermediate-plus live-attenuated IBD vaccines as well as a pathogenic viral strain. This protocol confirmed the respective immunosuppressive properties of those vaccines and virus. In the search for a more ethical alternative to Ph. Eur.-based protocols, two strategies were explored. First, ex vivo viral replication of those vaccines and the pathogenic strain in stimulated chicken primary bursal cells was assessed. Replication levels were not strictly correlated to immunosuppression observed in vivo. Second, changes in blood leukocyte counts in chicks were monitored using a Ph. Eur. - type protocol prior to lethal NDV challenge. In case of intermediate-plus vaccines, the drop in B cells counts was more severe. Counting blood B cells may thus represent a highly quantitative, faster, and ethical strategy than NDV challenge to assess the immunosuppression induced in chickens by live-attenuated IBD vaccines.

15.
Microbiol Resour Announc ; 11(7): e0010222, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35861555

RESUMO

We report the full-length genome sequence (compared to reference sequences) of a novel European variant strain of infectious bursal disease virus (IBDV), designated 19P009381 (AxB1). This should help to further identify such viruses in Europe.

16.
J Gen Virol ; 92(Pt 3): 534-43, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21123544

RESUMO

This study analysed the immune response in the intestinal tract of ducks infected with low-pathogenic avian influenza viruses compared with ducks treated orally with R848, a synthetic Toll-like receptor 7 (TLR7) agonist. Influenza virus infection induced a type I interferon (IFN)-dependent immune response characterized by the expression of Mx transcripts in the ileum at levels that were proportional to viral load. Mx transcripts were detected in differentiated enterocytes from influenza virus-infected ducks. By contrast, in R848-treated ducks, Mx transcripts were detected solely in intraepithelial round cells of haematopoietic origin. An increase was detected in the number of intraepithelial TLR7-positive cells and intraepithelial IFN-α-producing cells in influenza virus-infected ducks, albeit to a lower level than in R848-treated ducks. IFN-γ expression was also upregulated in the intestine of influenza virus-infected and R848-treated ducks. Finally, interleukin (IL)-1ß and IL-8 transcripts were expressed at high levels in R848-treated ducks but were not increased in influenza virus-infected ducks. These findings suggest that a type I IFN-mediated immune response in enterocytes and the activation of IFN-γ-secreting cells contribute to the control of influenza virus replication in the duck intestine.


Assuntos
Íleo/imunologia , Imidazóis/administração & dosagem , Vírus da Influenza A Subtipo H7N1/imunologia , Influenza Aviária/imunologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/imunologia , Animais , Patos , Enterócitos/imunologia , Imidazóis/imunologia , Imuno-Histoquímica , Interferon-alfa/biossíntese , Interferon-alfa/imunologia , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-1beta/biossíntese , Interleucina-1beta/imunologia , Interleucina-8/biossíntese , Interleucina-8/imunologia , Microscopia
17.
J Virol ; 84(13): 6733-47, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20410267

RESUMO

Large-scale sequence analyses of influenza viruses revealed that nonstructural 1 (NS1) proteins from avian influenza viruses have a conserved C-terminal ESEV amino acid motif, while NS1 proteins from typical human influenza viruses have a C-terminal RSKV motif. To test the influence of the C-terminal domains of NS1 on the virulence of an avian influenza virus, we generated a wild-type H7N1 virus with an ESEV motif and a mutant virus with an NS1 protein containing a C-terminal RSKV motif by reverse genetics. We compared the phenotypes of these viruses in vitro in human, mouse, and duck cells as well as in vivo in mice and ducks. In human cells, the human C-terminal RSKV domain increased virus replication. In contrast, the avian C-terminal ESEV motif of NS1 increased virulence in mice. We linked this increase in pathogenicity in mice to an increase in virus replication and to a more severe lung inflammation associated with a higher level of production of type I interferons. Interestingly, the human C-terminal RSKV motif of NS1 increased viral replication in ducks. H7N1 virus with a C-terminal RSKV motif replicated to higher levels in ducks and induced higher levels of Mx, a type I interferon-stimulated gene. Thus, we identify the C-terminal domain of NS1 as a species-specific virulence domain.


Assuntos
Vírus da Influenza A/patogenicidade , Proteínas não Estruturais Virais/fisiologia , Fatores de Virulência/fisiologia , Aminoácidos/genética , Animais , Linhagem Celular , Patos , Engenharia Genética , Humanos , Vírus da Influenza A/genética , Influenza Aviária/patologia , Influenza Aviária/virologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Proteínas Mutantes/fisiologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Estrutura Terciária de Proteína , Recombinação Genética , Proteínas não Estruturais Virais/genética , Virulência , Fatores de Virulência/genética , Replicação Viral
18.
Front Microbiol ; 12: 678563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177862

RESUMO

The avibirnavirus infectious bursal disease virus (IBDV) is responsible for a highly contagious and sometimes lethal disease of chickens (Gallus gallus). IBDV genetic variation is well-described for both field and live-attenuated vaccine strains, however, the dynamics and selection pressures behind this genetic evolution remain poorly documented. Here, genetically homogeneous virus stocks were generated using reverse genetics for a very virulent strain, rvv, and a vaccine-related strain, rCu-1. These viruses were serially passaged at controlled multiplicities of infection in several biological systems, including primary chickens B cells, the main cell type targeted by IBDV in vivo. Passages were also performed in the absence or presence of a strong selective pressure using the antiviral nucleoside analog 7-deaza-2'-C-methyladenosine (7DMA). Next Generation Sequencing (NGS) of viral genomes after the last passage in each biological system revealed that (i) a higher viral diversity was generated in segment A than in segment B, regardless 7DMA treatment and viral strain, (ii) diversity in segment B was increased by 7DMA treatment in both viruses, (iii) passaging of IBDV in primary chicken B cells, regardless of 7DMA treatment, did not select cell-culture adapted variants of rvv, preserving its capsid protein (VP2) properties, (iv) mutations in coding and non-coding regions of rCu-1 segment A could potentially associate to higher viral fitness, and (v) a specific selection, upon 7DMA addition, of a Thr329Ala substitution occurred in the viral polymerase VP1. The latter change, together with Ala270Thr change in VP2, proved to be associated with viral attenuation in vivo. These results identify genome sequences that are important for IBDV evolution in response to selection pressures. Such information will help tailor better strategies for controlling IBDV infection in chickens.

19.
Virol J ; 7: 63, 2010 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-20236536

RESUMO

In mammalian cells, nucleolar localization of influenza A NS1 requires the presence of a C-terminal nucleolar localization signal. This nucleolar localization signal is present only in certain strains of influenza A viruses. Therefore, only certain NS1 accumulate in the nucleolus of mammalian cells. In contrast, we show that all NS1 tested in this study accumulated in the nucleolus of avian cells even in the absence of the above described C-terminal nucleolar localization signal. Thus, nucleolar localization of NS1 in avian cells appears to rely on a different nucleolar localization signal that is more conserved among influenza virus strains.


Assuntos
Nucléolo Celular/química , Vírus da Influenza A/fisiologia , Proteínas não Estruturais Virais/análise , Animais , Linhagem Celular , Células Cultivadas , Embrião de Galinha , Galinhas , Patos , Células Epiteliais/virologia , Fibroblastos/virologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/fisiologia , Vírus da Influenza A/genética , Camundongos , Camundongos Endogâmicos BALB C , Sinais Direcionadores de Proteínas , Transporte Proteico
20.
Avian Dis ; 54(1 Suppl): 527-31, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20521689

RESUMO

The NS1 protein of influenza A viruses is known as a nonessential virulence factor inhibiting type I interferon (IFN) production in mammals and in chicken cells. Whether NS1 inhibits the induction of type I IFNs in duck cells is currently unknown. In order to investigate this issue, we used reverse genetics to generate a virus expressing a truncated NS1 protein. Using the low pathogenic avian influenza virus A/turkey/Italy/977/1999 (H7N1) as a backbone, we were able to rescue a virus expressing a truncated NS1 protein of 99 amino acids in length. The truncated virus replicated poorly in duck embryonic fibroblasts, but reached high titers in the mammalian IFN-deficient Vero cell line. Using a gene reporter system to measure duck type I IFN production, we showed that the truncated virus is a potent inducer of type I IFN in cell culture. These results show that the NS1 protein functions to prevent the induction of IFN in duck cells and underline the need for a functional NS1 protein in order for the virus to express its full virulence.


Assuntos
Patos , Vírus da Influenza A/patogenicidade , Interferons/metabolismo , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Patos/embriologia , Fibroblastos , Regulação Viral da Expressão Gênica , Humanos , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Interferons/genética , Mutação , Proteínas não Estruturais Virais/química , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA