Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 265, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164979

RESUMO

Oceanographic changes adjacent to Antarctica have global climatic and ecological impacts. However, this is the most challenging place in the world to obtain marine data due to its remoteness and inhospitable nature, especially in winter. Here, we present more than 2000 Conductivity-Temperature-Depth (CTD) profiles and associated water sample data collected with (almost uniquely) full year-round coverage from the British Antarctic Survey Rothera Research Station at the west Antarctic Peninsula. Sampling is conducted from a small boat or a sled, depending on the sea ice conditions. When conditions allow, sampling is twice weekly in summer and weekly in winter, with profiling to nominally 500 m and with discrete water samples taken at 15 m water depth. Daily observations are made of the sea ice conditions in the area. This paper presents the first 20 years of data collection, 1997-2017. This time series represents a unique and valuable resource for investigations of the high-latitude ocean's role in climate change, ocean/ice interactions, and marine biogeochemistry and carbon drawdown.

2.
Biology (Basel) ; 11(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35205187

RESUMO

The importance of cold-water blue carbon as biological carbon pumps that sequester carbon into ocean sediments is now being realised. Most polar blue carbon research to date has focussed on deep water, yet the highest productivity is in the shallows. This study measured the functional biodiversity and carbon standing stock accumulated by shallow-water (<25 m) benthic assemblages on both hard and soft substrata on the Antarctic Peninsula (WAP, 67° S). Soft substrata benthic assemblages (391 ± 499 t C km-2) contained 60% less carbon than hard substrata benthic assemblages (648 ± 909). In situ observations of substrata by SCUBA divers provided estimates of 59% hard (4700 km) and 12% soft (960 km) substrata on seasonally ice-free shores of the Antarctic Peninsula, giving an estimate of 253,000 t C at 20 m depth, with a sequestration potential of ~4500 t C year-1. Currently, 54% of the shoreline is permanently ice covered and so climate-mediated ice loss along the Peninsula is predicted to more than double this carbon sink. The steep fjordic shorelines make these assemblages a globally important pathway to sequestration, acting as one of the few negative (mitigating) feedbacks to climate change. The proposed WAP marine protected area could safeguard this ecosystem service, helping to tackle the climate and biodiversity crises.

3.
Ambio ; 51(2): 370-382, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34628602

RESUMO

Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.


Assuntos
Ecossistema , Sedimentos Geológicos , Regiões Árticas , Mudança Climática , Camada de Gelo
4.
Biology (Basel) ; 10(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34943254

RESUMO

Carbon-rich habitats can provide powerful climate mitigation if meaningful protection is put in place. We attempted to quantify this around the Tristan da Cunha archipelago Marine Protected Area. Its shallows (<1000 m depth) are varied and productive. The 5.4 km2 of kelp stores ~60 tonnes of carbon (tC) and may export ~240 tC into surrounding depths. In deep-waters we analysed seabed data collected from three research cruises, including seabed mapping, camera imagery, seabed oceanography and benthic samples from mini-Agassiz trawl. Rich biological assemblages on seamounts significantly differed to the islands and carbon storage had complex drivers. We estimate ~2.3 million tC are stored in benthic biodiversity of waters <1000 m, which includes >0.22 million tC that can be sequestered (the proportion of the carbon captured that is expected to become buried in sediment or locked away in skeletal tissue for at least 100 years). Much of this carbon is captured by cold-water coral reefs as a mixture of inorganic (largely calcium carbonate) and organic compounds. As part of its 2020 Marine Protection Strategy, these deep-water reef systems are now protected by a full bottom-trawling ban throughout Tristan da Cunha and representative no take areas on its seamounts. This small United Kingdom Overseas Territory's reef systems represent approximately 0.8 Mt CO2 equivalent sequestered carbon; valued at >£24 Million GBP (at the UN shadow price of carbon). Annual productivity of this protected standing stock generates an estimated £3 million worth of sequestered carbon a year, making it an unrecognized and potentially major component of the economy of small island nations like Tristan da Cunha. Conservation of near intact habitats are expected to provide strong climate and biodiversity returns, which are exemplified by this MPA.

5.
PLoS One ; 8(6): e66033, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840393

RESUMO

Juvenile stages are often thought to be less resistant to thermal challenges than adults, yet few studies make direct comparisons using the same methods between different life history stages. We tested the resilience of juvenile stages compared to adults in 4 species of Antarctic marine invertebrate over 3 different rates of experimental warming. The species used represent 3 phyla and 4 classes, and were the soft-shelled clam Laternula elliptica, the sea cucumber Cucumaria georgiana, the sea urchin Sterechinus neumayeri, and the seastar Odontaster validus. All four species are widely distributed, locally abundant to very abundant and are amongst the most important in the ecosystem for their roles. At the slowest rate of warming used (1°C 3 days(-1)) juveniles survived to higher temperatures than adults in all species studied. At the intermediate rate (1°C day(-1)) juveniles performed better in 3 of the 4 species, with no difference in the 4(th), and at the fastest rate of warming (1°C h(-1)) L. elliptica adults survived to higher temperatures than juveniles, but in C. georgiana juveniles survived to higher temperatures than adults and there were no differences in the other species. Oxygen limitation may explain the better performance of juveniles at the slower rates of warming, whereas the loss of difference between juveniles and adults at the fastest rate of warming suggests another mechanism sets the temperature limit here.


Assuntos
Temperatura Alta , Invertebrados/fisiologia , Envelhecimento/fisiologia , Animais , Regiões Antárticas , Tamanho Corporal , Invertebrados/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA