Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Dev Technol ; : 1-29, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387661

RESUMO

AIM: Oral candidiasis is often challenging due to limited effectiveness of topical treatments. This study aimed to develop novel caspofungin formulations for administration onto the oral mucosa to enhance drug retention and efficacy. METHOD: Five caspofungin (2%, w/v) formulations were developed to assess their permeability, retention and mucoadhesiveness. Ex vivo permeability assays were performed on buccal and sublingual mucosae, and histological analyses conducted to evaluate tissue tolerance. RESULTS: Formulation composed of chitosan demonstrated the highest retention in both buccal (5183.24 ± 587.32 µg/cm2) and sublingual (1090.72 ± 110.26 µg/cm2) mucosae. Other formulations exhibited significantly lower retention, ranging from 7.53 ± 0.81 to 1852.10 ± 193.24 µg/cm2 in buccal mucosa and 1.64 ± 0.14 to 317.74 ± 31.78 µg/cm2 in sublingual mucosa. Chitosan-based formulation exhibited the highest mucoadhesive strength, with values of 5179.05 ± 31.99 mN/cm2 for buccal and 7026.10 ± 123.41 mN/cm2 for sublingual mucosae, and also superior extensibility, which facilitates application in the oral cavity. All formulations showed antifungal activity against Candida spp., and histological analyses revealed minor epithelial alterations. CONCLUSION: The developed formulations offer distinct advantages for treating oral candidiasis, with chitosan formulation emerging as the most promising due to its superior retention, mucoadhesion force, and spreadability, making it a potential candidate for further clinical investigation.

2.
Chem Biodivers ; 20(10): e202300083, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37681514

RESUMO

This work describes a new hair dyeing methodology using a chemical reaction between geniposide, an iridoid glycoside extracted from the fruit of Genipa americana (geniposide extract, GE) and the amine group of hair keratin. The influence of reaction conditions (pH, temperature, and extract concentration) on the staining of hair fibers, color development, fiber morphology, and mechanical hair properties of black and white human hair samples, was evaluated before and after GE dyeing treatment. Eye contact safety of GE was also studied using HET-CAM. The treatment of white hair fibers using GE at 20 mg mL-1 , temperature of 80 °C and pH 5.5 presented the greatest color change (ΔE=54.0). The higher pH influence was observed at pH 10.0 on white hair tresses (ΔE=6.8), using an GE concentration of 20 mg mL-1 and room temperature (25 °C). Treated samples showed marked changes on mechanical and morphological properties. The HET-CAM did not show any change, thus demonstrating that using GE is safe. In conclusion, the temperature and concentration of the extract were the variables that mostly influenced the color and hair damage. A new approach for hair dyeing was established where iridoids may potentially be useful as a natural hair dyeing.

3.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985847

RESUMO

Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) are receiving increasing interest as an approach to encapsulate natural extracts to increase the physicochemical stability of bioactives. Cannabis extract-derived cannabidiol (CBD) has potent therapeutic properties, including anti-inflammatory, antioxidant, and neuroprotective properties. In this work, physicochemical characterization was carried out after producing Compritol-based nanoparticles (cSLN or cNLC) loaded with CBD. Then, the determination of the encapsulation efficiency (EE), loading capacity (LC), particle size (Z-Ave), polydispersity index (PDI), and zeta potential were performed. Additionally, the viscoelastic profiles and differential scanning calorimetry (DSC) patterns were recorded. As a result, CBD-loaded SLN showed a mean particle size of 217.2 ± 6.5 nm, PDI of 0.273 ± 0.023, and EE of about 74%, while CBD-loaded NLC showed Z-Ave of 158.3 ± 6.6 nm, PDI of 0.325 ± 0.016, and EE of about 70%. The rheological analysis showed that the loss modulus for both lipid nanoparticle formulations was higher than the storage modulus over the applied frequency range of 10 Hz, demonstrating that they are more elastic than viscous. The crystallinity profiles of both CBD-cSLN (90.41%) and CBD-cNLC (40.18%) were determined. It may justify the obtained encapsulation parameters while corroborating the liquid-like character demonstrated in the rheological analysis. Scanning electron microscopy (SEM) study confirmed the morphology and shape of the developed nanoparticles. The work has proven that the solid nature and morphology of cSLN/cNLC strengthen these particles' potential to modify the CBD delivery profile for several biomedical applications.


Assuntos
Canabidiol , Canabinoides , Nanopartículas , Lipídeos/química , Portadores de Fármacos/química , Nanopartículas/química , Tamanho da Partícula , Varredura Diferencial de Calorimetria
4.
Inflammopharmacology ; 31(5): 2505-2519, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37639162

RESUMO

The aim of this work was to evaluate the anti-inflammatory and antioxidant effects of ethyl acetate extract obtained from the leaves of Brazilian peppertree Schinus terebinthifolius Raddi (EAELSt). Total phenols and flavonoids, chemical constituents, in vitro antioxidant activity (DPPH and lipoperoxidation assays), and cytotoxicity in L929 fibroblasts were determined. In vivo anti-inflammatory and antioxidant properties were evaluated using TPA-induced ear inflammation model in mice. Phenol and flavonoid contents were 19.2 ± 0.4 and 93.8 ± 5.2 of gallic acid or quercetin equivalents/g, respectively. LC-MS analysis identified 43 compounds, of which myricetin-O-pentoside and quercetin-O-rhamnoside were major peaks of chromatogram. Incubation with EAELSt decreased the amount of DPPH radical (EC50 of 54.5 ± 2.4 µg/mL) and lipoperoxidation at 200-500 µg/mL. The incubation with EAELSt did not change fibroblast viability up to 100 µg/mL. Topical treatment with EAELSt significantly reduced edema and myeloperoxidase activity at 0.3, 1, and 3 mg/ear when compared to the vehicle-treated group. In addition, EAELSt decreased IL-6 and TNF-α levels and increased IL-10 levels. Besides, it modulated markers of oxidative stress (reduced total hydroperoxides and increased sulfhydryl contents and ferrium reduction potential) and increased the activity of catalase and superoxide dismutase, without altering GPx activity.


Assuntos
Anacardiaceae , Antioxidantes , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Schinus , Quercetina , Brasil , Anacardiaceae/química , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Folhas de Planta/química
5.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682824

RESUMO

Innate and adaptive immunity are essential for neurodevelopment and central nervous system (CNS) homeostasis; however, the fragile equilibrium between immune and brain cells can be disturbed by any immune dysregulation and cause detrimental effects. Accumulating evidence indicates that, despite the blood-brain barrier (BBB), overactivation of the immune system leads to brain vulnerability that increases the risk of neuropsychiatric disorders, particularly upon subsequent exposure later in life. Disruption of microglial function in later life can be triggered by various environmental and psychological factors, including obesity-driven chronic low-grade inflammation and gut dysbiosis. Increased visceral adiposity has been recognized as an important risk factor for multiple neuropsychiatric conditions. The review aims to present our current understanding of the topic.


Assuntos
Microbioma Gastrointestinal , Encéfalo , Disbiose , Microbioma Gastrointestinal/fisiologia , Humanos , Inflamação , Obesidade
6.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897683

RESUMO

In this work, three pesticides of different physicochemical properties: glyphosate (GLY, herbicide), imidacloprid (IMD, insecticide), and imazalil (IMZ, fungicide), were selected to assess their cytotoxicity against Caco-2 and HepG2 cells. Cell viability was assessed by the Alamar Blue assay, after 24 and 48 h exposure to different concentrations, and IC50 values were calculated. The mechanisms underlying toxicity, namely cellular reactive oxygen species (ROS), glutathione (GSH) content, lipid peroxidation, loss of mitochondrial membrane potential (MMP), and apoptosis/necrosis induction were assessed by flow cytometry. Cytotoxic profiles were further correlated with the molecular physicochemical parameters of pesticides, namely: water solubility, partition coefficient in an n-octanol/water (Log Pow) system, topological polar surface area (TPSA), the number of hydrogen-bonds (donor/acceptor), and rotatable bonds. In vitro outputs resulted in the following toxicity level: IMZ (Caco-2: IC50 = 253.5 ± 3.37 µM, and HepG2: IC50 = 94 ± 12 µM) > IMD (Caco-2: IC50 > 1 mM and HepG2: IC50 = 624 ± 24 µM) > GLY (IC50 >>1 mM, both cell lines), after 24 h treatment, being toxicity time-dependent (lower IC50 values at 48 h). Toxicity is explained by oxidative stress, as IMZ induced a higher intracellular ROS increase and lipid peroxidation, followed by IMD, while GLY did not change these markers. However, the three pesticides induced loss of MMP in HepG2 cells while in Caco-2 cells only IMZ produced significant MMP loss. Increased ROS and loss of MMP promoted apoptosis in Caco-2 cells subjected to IMZ, and in HepG2 cells exposed to IMD and IMZ, as assessed by Annexin-V/PI. The toxicity profile of pesticides is directly correlated with their Log Pow, as affinity for the lipophilic environment favours interaction with cell membranes governs, and is inversely correlated with their TPSA; however, membrane permeation is favoured by lower TPSA. IMZ presents the best molecular properties for membrane interaction and cell permeation, i.e., higher Log Pow, lower TPSA and lower hydrogen-bond (H-bond) donor/acceptor correlating with its higher toxicity. In conclusion, molecular physicochemical factors such as Log Pow, TPSA, and H-bond are likely to be directly correlated with pesticide-induced toxicity, thus they are key factors to potentially predict the toxicity of other compounds.


Assuntos
Praguicidas , Apoptose , Células CACO-2 , Glutationa/metabolismo , Células Hep G2 , Humanos , Hidrogênio , Estresse Oxidativo , Praguicidas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Água
7.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292951

RESUMO

The complexity of the eye structure and its physiology turned ocular drug administration into one of the most challenging topics in the pharmaceutical field. Ocular inflammation is one of the most common ophthalmic disorders. Topical administration of anti-inflammatory drugs is also commonly used as a side treatment in tissue repair and regeneration. The difficulty in overcoming the eye barriers, which are both physical and chemical, reduces drug bioavailability, and the frequency of administration must be increased to reach the therapeutic effect. However, this can cause serious side effects. Lipid nanoparticles seem to be a great alternative to ocular drug delivery as they are composed from natural excipients and can encapsulate both hydrophilic and lipophilic drugs of different sources, and their unique properties, as their excellent biocompatibility, safety and adhesion allow to increase the bioavailability, compliance and achieve a sustained drug release. They are also very stable, easy to produce and scale up, and can be lyophilized or sterilized with no significant alterations to the release profile and stability. Because of this, lipid nanoparticles show a great potential to be an essential part of the new therapeutic technologies in ophthalmology to deliver synthetic and natural anti-inflammatory drugs. In fact, there is an increasing interest in natural bioactives with anti-inflammatory activities, and the use of nanoparticles for their site-specific delivery. It is therefore expected that, in the near future, many more studies will promote the development of new nanomedicines resulting in clinical studies of new drugs formulations.


Assuntos
Excipientes , Nanopartículas , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Lipossomos , Disponibilidade Biológica , Lipídeos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
8.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682847

RESUMO

Lipid nanoparticles are currently used to deliver drugs to specific sites in the body, known as targeted therapy. Conjugates of lipids and drugs to produce drug-enriched phospholipid micelles have been proposed to increase the lipophilic character of drugs to overcome biological barriers. However, their applicability at the topical level is still minimal. Phospholipid micelles are amphiphilic colloidal systems of nanometric dimensions, composed of a lipophilic nucleus and a hydrophilic outer surface. They are currently used successfully as pharmaceutical vehicles for poorly water-soluble drugs. These micelles have high in vitro and in vivo stability and high biocompatibility. This review discusses the use of lipid-drug conjugates as biocompatible carriers for cutaneous application. This work provides a metadata analysis of publications concerning the conjugation of cannabidiol with lipids as a suitable approach and as a new delivery system for this drug.


Assuntos
Canabidiol , Nanopartículas , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Lipossomos , Micelas , Fosfolipídeos
9.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269743

RESUMO

Age-related macular degeneration (AMD) is an eye disease typically associated with the aging and can be classified into two types-namely, the exudative and the nonexudative AMD. Currently available treatments for exudative AMD use intravitreal injections, which are associated with high risk of infection that can lead to endophthalmitis, while no successful treatments yet exist for the nonexudative form of AMD. In addition to the pharmacologic therapies administered by intravitreal injection already approved by the Food and Drug Administration (FDA) in exudative AMD, there are some laser treatments approved that can be used in combination with the pharmacological therapies. In this review, we discuss the latest developments of treatment options for AMD. Relevant literature available from 1993 was used, which included original articles and reviews available in PubMed database and also information collected from Clinical Trials Gov website using "age-related macular degeneration" and "antiangiogenic therapies" as keywords. The clinical trials search was limited to ongoing trials from 2015 to date.


Assuntos
Atrofia Geográfica , Degeneração Macular , Inibidores da Angiogênese/uso terapêutico , Atrofia Geográfica/tratamento farmacológico , Humanos , Injeções Intravítreas , Degeneração Macular/complicações , Degeneração Macular/tratamento farmacológico
10.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233066

RESUMO

Damage to the retinal pigment epithelium, Bruch's membrane and/or tissues underlying macula is known to increase the risk of age-related macular degeneration (AMD). AMD is commonly categorized in two distinct types, namely, the nonexudative (dry form) and the exudative (wet form). Currently, there is no ideal treatment available for AMD. Recommended standard treatments are based on the use of vascular endothelial growth factor (VEGF), with the disadvantage of requiring repeated intravitreal injections which hinder patient's compliance to the therapy. In recent years, several synthetic and natural active compounds have been proposed as innovative therapeutic strategies against this disease. There is a growing interest in the development of formulations based on nanotechnology because of its important role in the management of posterior eye segment disorders, without the use of intravitreal injections, and furthermore, with the potential to prolong drug release and thus reduce adverse effects. In the same way, 3D bioprinting constitutes an alternative to regeneration therapies for the human retina to restore its functions. The application of 3D bioprinting may change the current and future perspectives of the treatment of patients with AMD, especially those who do not respond to conventional treatment. To monitor the progress of AMD treatment and disease, retinal images are used. In this work, we revised the recent challenges encountered in the treatment of different forms of AMD, innovative nanoformulations, 3D bioprinting, and techniques to monitor the progress.


Assuntos
Macula Lutea , Degeneração Macular , Lâmina Basilar da Corioide , Humanos , Macula Lutea/metabolismo , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499503

RESUMO

The Himatanthus genus presents anti-inflammatory, antioxidant activities, suggesting potential wound-healing properties. This study aimed to develop and analyze the wound-healing properties of a photopolymerizable gelatin-based hydrogel (GelMA) containing an ethanolic extract of Himatanthus bracteatus in a murine model. The extract was obtained under high pressure conditions, incorporated (2%) into the GelMA (GelMA-HB), and physically characterized. The anti-inflammatory activity of the extract was assessed using a carrageenan-induced pleurisy model and the GelMA-HB scarring properties in a wound-healing assay. The extract reduced IL-1ß and TNF-α levels (48.5 ± 6.7 and 64.1 ± 4.9 pg/mL) compared to the vehicle (94.4 ± 2.3 pg/mL and 106.3 ± 5.7 pg/mL; p < 0.001). GelMA-HB depicted significantly lower swelling and increased resistance to mechanical compression compared to GelMA (p < 0.05). GelMA-HB accelerated wound closure over the time course of the experiment (p < 0.05) and promoted a significantly greater peak of myofibroblast differentiation (36.1 ± 6.6 cells) and microvascular density (23.1 ± 0.7 microvessels) on day 7 in comparison to GelMA (31.9 ± 5.3 cells and 20.2 ± 0.6 microvessels) and the control (25.8 ± 4.6 cells and 17.5 ± 0.5 microvessels) (p < 0.05). In conclusion, GelMA-HB improved wound healing in rodents, probably by modulating the inflammatory response and myofibroblastic and microvascular differentiation.


Assuntos
Apocynaceae , Hidrogéis , Camundongos , Animais , Hidrogéis/farmacologia , Metacrilatos/farmacologia , Gelatina/farmacologia , Cicatrização
12.
Molecules ; 27(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144599

RESUMO

Over the last decades, we have witnessed an increasing interest in food-related products containing vegetable oils. These oils can be obtained either by extraction or by mechanical pressing of different parts of plants (e.g., seeds, fruit, and drupels). Producers of nutraceuticals have ceaselessly searched for unique and effective natural ingredients. The enormous success of argan oil has been followed by discoveries of other interesting vegetable oils (e.g., pomegranate oil) containing several bioactives. This work describes the pomegranate fruit extract and seed oil as a rich source of conjugated linolenic acid as a metabolite of punicic acid (PA), deriving from the omega-5 family (ω-5). Through the chemical characterization of PA, its nutritional and therapeutic properties are highlighted together with the physiological properties that encourage its use in human nutrition. We analyzed the composition of all fatty acids with beneficial properties occurring in pomegranate seed oil using gas chromatography (GC) with flame-ionization detection (FID) analysis combined with Fourier transform infrared spectroscopy (FTIR). Pomegranate seed oil mainly consists of 9,11,13-octadic-trienoic acid (18:3), corresponding to 73 wt % of the total fatty acids. Nine components were identified by GC in PSO, varying between 0.58 and 73.19 wt %. Using midinfrared (MIR) spectroscopy, we compared the composition of pomegranate seed oil with that of meadowfoam seed oil (MSO), which is also becoming increasingly popular in the food industry due to its high content of long chain fatty acids (C20-22), providing increased oil stability. From the results of FTIR and MIR spectroscopy, we found that punicic acid is unique in PSO (73.19 wt %) but not in MSO.


Assuntos
Lythraceae , Punica granatum , Cromatografia Gasosa , Ácidos Graxos/química , Humanos , Ácidos Linolênicos/química , Lythraceae/química , Extratos Vegetais/química , Óleos de Plantas/química , Sementes/química , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235026

RESUMO

This study aims to evaluate the feasibility of producing acyclovir-containing modified release matrix tablets by a wet granulation method based on the type and concentration of two pharmaceutical-grade hydrophilic matrix polymers (i.e., hydroxypropyl methylcellulose (HPMC), carbomers, and their combinations) commonly used in biomedical applications. The mechanical properties of the tablets and in vitro and in vivo performance were studied. The physicochemical properties of the raw materials and corresponding physical mixtures were characterized by differential scanning calorimetry, showing that the hydrophilic polymers did not influence the physicochemical properties of the drug. The wet granulation process improved the flow and compression properties of the obtained granules. This method enabled the preparation of the matrix tablets of acyclovir with appropriate mechanical properties concerning hardness and friability. The drug release kinetics was governed by the type and concentration of the hydrophilic polymers composing the matrices. The study has proven that HPMC-composed tablets were superior in modified drug release properties compared to carbomer- and HPMC/carbomer-based tablets. Mathematical analysis of the release profiles, determined in a medium adjusted to pH 1.2 followed by pH 7.4, revealed that the drug released from the hydrophilic tablets followed non-Fickian first-order kinetics. An optimal HPMC-based formulation submitted to accelerated stability studies (40 °C, 75% RH) was stable for three months. A complete cross-over bioavailability study of the selected acyclovir-loaded sustained release tablets and marketed immediate-release tablets were compared in six healthy male volunteers. The extent of drug absorption from the sustained release tablets was significantly greater than that from immediate-release pills, which may improve the drug's antiviral properties attributed to the lower elimination rate and enhanced acyclovir half-life.


Assuntos
Excipientes , Polímeros , Aciclovir , Antivirais , Preparações de Ação Retardada/química , Excipientes/química , Humanos , Derivados da Hipromelose/química , Masculino , Metilcelulose/química , Solubilidade , Comprimidos/química
14.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558047

RESUMO

The aim of this study was the development of a cereal bar based on bee pollen (BP), honey (H), and flour by-products (peel passion fruit flour-PPFF), generating an innovative product. BP is a protein-rich ingredient and can be used in the composition of cereal bars. PPFF is a by-product rich in fibers. The formulations were developed using a 23 factorial design with four replicates in the center point, studying the sensory analysis as a response variable. The texture and nutritional parameters were performed for the optimal formulation. BP showed ca. 15% of protein. The final formulation (10.35% BP, 6.8% PPFF, and 25% H) presented 22.2% moisture, 1.8% ash, 0.4% total fat, 3.0% fiber, 63.1% carbohydrates, and 74.0 Kcal/25 g. The sensory analysis presented valued around 7 (typical of a traditional bar). Regarding the possibility of purchasing the product, 51% of the panelists said they would probably buy the developed product. The formulated cereal bar had a similar composition as those already marketed. Moreover, it can be considered a source of fiber and is sensory acceptable. This approach opens up new opportunities for developing nutritional and functional foodstuff with improved sensorial aspects.


Assuntos
Fibras na Dieta , Mel , Fibras na Dieta/análise , Valor Nutritivo , Grão Comestível/química
15.
Curr Issues Mol Biol ; 43(1): 335-352, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208147

RESUMO

Plant extracts rich in phenolic compounds have been demonstrated to accelerate wound healing, but their use by oral route has been poorly studied. The leaves of Vitis labrusca are rich in phenolic acids and flavonoids. The goal of this study was to assess the healing properties of the oral administration of hydroalcoholic extract of V. labrusca leaves (HEVL) in a murine model. HEVL was obtained by Soxhlet and dynamic maceration, and their yield and phenolic acids and flavonoid contents were determined. For the wound healing assay, 8 mm wounds were performed on the back of 48 Wistar rats, assigned into four groups (n = 12): CTR (distilled water), HEVL100, HEVL200, and HEVL300 (HEVL at 100, 200, and 300 mg/kg, respectively). On days 7 and 14, wound closure rates were assessed, and the healing wounds were subjected to histological analysis. Soxhlet-obtained extract was selected for the wound healing assay because it provided a higher yield and phenolic acid and flavonoid contents. HEVL significantly reduced leukocytosis in the peripheral blood (p < 0.05), accelerated wound closure (p < 0.05), and improved collagenization (p < 0.05) on day 7, as well as enhanced the epidermal tissue thickness (p < 0.001) and elastic fiber deposition on day 14 (p < 0.01). Furthermore, HEVL promoted an increase in the histological grading of wound healing on both days 7 and 14 (p < 0.01). The doses of 200 and 300 mg/kg provided better results than 100 mg/Kg. Our data provide histological evidence that the oral administration of HEVL improves wound healing in rodents. Therefore, the extract can be a potential oral medicine for healing purposes.


Assuntos
Extratos Vegetais/farmacologia , Folhas de Planta/química , Vitis/química , Cicatrização/efeitos dos fármacos , Administração Oral , Animais , Colágeno Tipo III/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Epiderme/patologia , Etanol/química , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Técnicas Histológicas/métodos , Hidroxibenzoatos/administração & dosagem , Hidroxibenzoatos/farmacologia , Contagem de Leucócitos , Leucocitose/prevenção & controle , Masculino , Extratos Vegetais/administração & dosagem , Ratos Wistar , Fatores de Tempo
16.
Appl Microbiol Biotechnol ; 105(21-22): 8227-8240, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34625819

RESUMO

Leishmania is a complex disease caused by the protozoan parasites and transmitted by female phlebotomine sandfly. The disease affects some of the poorest people on earth with an estimated 700,000 to 1 million new cases annually. The current treatment for leishmaniasis is toxic, long, and limited, in view of the high resistance rate presented by the parasite, necessitating new perspectives for treatment. The discovery of new compounds with different targets can be a hope to make the treatment more efficient. Microbial metabolites and their structural analogues with enormous scaffold diversity and structural complexity have historically played a key role in drug discovery. We found thirty-nine research articles published between 1999 and 2021 in the scientific database (PubMed, Science Direct) describing microbes and their metabolites with activity against leishmanial parasites which is the focus of this review. KEY POINTS: • Leishmania affects the poorest regions of the globe • Current treatments for leishmaniasis are toxic and of limited efficacy • Microbial metabolites are potential sources of antileishmania drugs.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Descoberta de Drogas , Feminino , Humanos , Leishmaniose/tratamento farmacológico
17.
J Nanobiotechnology ; 19(1): 346, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715852

RESUMO

Despite significant advances in therapeutic possibilities for the treatment of inflammatory bowel disease (IBD) in recent years, there is still a big room for improvement. In particular, biological treatment can induce not only clinical remission but also mucosal healing of the gastrointestinal tract. Among these therapeutic molecules, anti-tumor necrosis factor-alpha (anti-TNF-α) antibodies were the first to revolutionize treatment algorithms in IBD. However, due to the parenteral route of administration and systemic mode of action, TNF-α blockers are characterised by high rates of immunogenicity-related loss of response and serious adverse events. Moreover, intravenous or subcutaneous therapy is not considered patient-friendly and requires occasional, direct contact with healthcare centres. To overcome these limitations, several attempts have been made to design oral pharmaceutical formulations of these molecules. It is hypothesized that oral anti-TNF-α antibodies therapy can directly provide a targeted and potent anti-inflammatory effect in the inflamed gastrointestinal tissues without significant systemic exposure, improving long-term treatment outcomes and safety. In this review, we discuss the current knowledge and future perspectives regarding different approaches made towards entering a new era of oral anti-TNF-α therapy, namely, the tailoring of biocompatible nanoparticles with anti-TNF-α antibodies for site-specific targeting to IBD. In particular, we discuss the latest concepts applying the achievements of nanotechnology-based drug design in this area.


Assuntos
Doenças Inflamatórias Intestinais/tratamento farmacológico , Lipossomos/farmacologia , Lipossomos/uso terapêutico , Nanopartículas/uso terapêutico , Inibidores do Fator de Necrose Tumoral/farmacologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Administração Oral , Anticorpos Monoclonais , Colite/induzido quimicamente , Humanos , Imunoglobulina G , Imunoterapia , Doenças Inflamatórias Intestinais/induzido quimicamente , Resultado do Tratamento , Fator de Necrose Tumoral alfa/imunologia
18.
J Nanobiotechnology ; 19(1): 122, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926475

RESUMO

Increasing life expectancy has led to an aging population, which has consequently increased the prevalence of dementia. Alzheimer's disease (AD), the most common form of dementia worldwide, is estimated to make up 50-80% of all cases. AD cases are expected to reach 131 million by 2050, and this increasing prevalence will critically burden economies and health systems in the next decades. There is currently no treatment that can stop or reverse disease progression. In addition, the late diagnosis of AD constitutes a major obstacle to effective disease management. Therefore, improved diagnostic tools and new treatments for AD are urgently needed. In this review, we investigate and describe both well-established and recently discovered AD biomarkers that could potentially be used to detect AD at early stages and allow the monitoring of disease progression. Proteins such as NfL, MMPs, p-tau217, YKL-40, SNAP-25, VCAM-1, and Ng / BACE are some of the most promising biomarkers because of their successful use as diagnostic tools. In addition, we explore the most recent molecular strategies for an AD therapeutic approach and nanomedicine-based technologies, used to both target drugs to the brain and serve as devices for tracking disease progression diagnostic biomarkers. State-of-the-art nanoparticles, such as polymeric, lipid, and metal-based, are being widely investigated for their potential to improve the effectiveness of both conventional drugs and novel compounds for treating AD. The most recent studies on these nanodevices are deeply explained and discussed in this review.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Biomarcadores/metabolismo , Nanomedicina/métodos , Envelhecimento , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides , Animais , Encéfalo , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas Metálicas , Estresse Oxidativo
19.
Chem Biodivers ; 18(11): e2100549, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34643327

RESUMO

Bacteria can produce nitrogenous compounds via both primary and secondary metabolic processes. Many bacterial volatile nitrogenous compounds produced during the secondary metabolism have been identified and reported for their antioxidant, antibacterial, antifungal, algicidal and antitumor activities. The production of these nitrogenous compounds depends on several factors, including the composition of culture media, growth conditions, and even the organic solvent used for their extraction, thus requiring their identification in specific conditions. In this review, we describe the volatile nitrogenous compounds produced by bacteria especially focusing on their antimicrobial activity. We concentrate on azo-compounds mainly pyrazines and pyrrolo-pyridines reported for their activity against several microorganisms. Whenever significant, extraction and identification methods of these compounds are also mentioned and discussed. To the best of our knowledge, this is first review describing volatile nitrogenous compounds from bacteria focusing on their biological activity.


Assuntos
Antibacterianos/farmacologia , Compostos Azo/farmacologia , Bactérias/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Compostos Azo/química , Compostos Azo/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
20.
Chem Biodivers ; 18(9): e2100336, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34369662

RESUMO

Leishmaniasis is a group of tropical diseases caused by parasitic protozoa belonging to the genus Leishmania. The disease is categorized in cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL), and visceral leishmaniasis (VL). The conventional treatment is complex and can present high toxicity and therapeutic failures. Thus, there is a continuing need to develop new treatments. In this review, we focus on the novel molecules described in the literature with potential leishmanicidal activity, categorizing them in pre-clinical (in vitro, in vivo), drug repurposing and clinical research.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Antiprotozoários/química , Humanos , Testes de Sensibilidade Parasitária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA