Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 606(7915): 761-768, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35551511

RESUMO

SARS-CoV-2, like other coronaviruses, builds a membrane-bound replication organelle to enable RNA replication1. The SARS-CoV-2 replication organelle is composed of double-membrane vesicles (DMVs) that are tethered to the endoplasmic reticulum (ER) by thin membrane connectors2, but the viral proteins and the host factors involved remain unknown. Here we identify the viral non-structural proteins (NSPs) that generate the SARS-CoV-2 replication organelle. NSP3 and NSP4 generate the DMVs, whereas NSP6, through oligomerization and an amphipathic helix, zippers ER membranes and establishes the connectors. The NSP6(ΔSGF) mutant, which arose independently in the Alpha, Beta, Gamma, Eta, Iota and Lambda variants of SARS-CoV-2, behaves as a gain-of-function mutant with a higher ER-zippering activity. We identified three main roles for NSP6: first, to act as a filter in communication between the replication organelle and the ER, by allowing lipid flow but restricting the access of ER luminal proteins to the DMVs; second, to position and organize DMV clusters; and third, to mediate contact with lipid droplets (LDs) through the LD-tethering complex DFCP1-RAB18. NSP6 thus acts as an organizer of DMV clusters and can provide a selective means of refurbishing them with LD-derived lipids. Notably, both properly formed NSP6 connectors and LDs are required for the replication of SARS-CoV-2. Our findings provide insight into the biological activity of NSP6 of SARS-CoV-2 and of other coronaviruses, and have the potential to fuel the search for broad antiviral agents.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Proteínas não Estruturais Virais , Replicação Viral , COVID-19/virologia , Proteínas de Transporte , Linhagem Celular , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Humanos , Gotículas Lipídicas , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , Proteínas não Estruturais Virais/metabolismo , Proteínas rab de Ligação ao GTP
2.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125749

RESUMO

Despite successful vaccination efforts, the emergence of new SARS-CoV-2 variants poses ongoing challenges to control COVID-19. Understanding humoral responses regarding SARS-CoV-2 infections and their impact is crucial for developing future vaccines that are effective worldwide. Here, we identified 41 immunodominant linear B-cell epitopes in its spike glycoprotein with an SPOT synthesis peptide array probed with a pool of serum from hospitalized COVID-19 patients. The bioinformatics showed a restricted set of epitopes unique to SARS-CoV-2 compared to other coronavirus family members. Potential crosstalk was also detected with Dengue virus (DENV), which was confirmed by screening individuals infected with DENV before the COVID-19 pandemic in a commercial ELISA for anti-SARS-CoV-2 antibodies. A high-resolution evaluation of antibody reactivity against peptides representing epitopes in the spike protein identified ten sequences in the NTD, RBD, and S2 domains. Functionally, antibody-dependent enhancement (ADE) in SARS-CoV-2 infections of monocytes was observed in vitro with pre-pandemic Dengue-positive sera. A significant increase in viral load was measured compared to that of the controls, with no detectable neutralization or considerable cell death, suggesting its role in viral entry. Cross-reactivity against peptides from spike proteins was observed for the pre-pandemic sera. This study highlights the importance of identifying specific epitopes generated during the humoral response to a pathogenic infection to understand the potential interplay of previous and future infections on diseases and their impact on vaccinations and immunodiagnostics.


Assuntos
Anticorpos Antivirais , COVID-19 , Reações Cruzadas , Vírus da Dengue , Epitopos de Linfócito B , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/imunologia , Humanos , Reações Cruzadas/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Epitopos de Linfócito B/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/virologia , Anticorpos Facilitadores/imunologia , Pandemias , Epitopos Imunodominantes/imunologia
3.
PLoS Pathog ; 16(12): e1009127, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33326472

RESUMO

Viruses are obligate intracellular parasites that make use of the host metabolic machineries to meet their biosynthetic needs. Thus, identifying the host pathways essential for the virus replication may lead to potential targets for therapeutic intervention. The mechanisms and pathways explored by SARS-CoV-2 to support its replication within host cells are not fully known. Lipid droplets (LD) are organelles with major functions in lipid metabolism, energy homeostasis and intracellular transport, and have multiple roles in infections and inflammation. Here we described that monocytes from COVID-19 patients have an increased LD accumulation compared to SARS-CoV-2 negative donors. In vitro, SARS-CoV-2 infection were seen to modulate pathways of lipid synthesis and uptake as monitored by testing for CD36, SREBP-1, PPARγ, and DGAT-1 expression in monocytes and triggered LD formation in different human cell lines. LDs were found in close apposition with SARS-CoV-2 proteins and double-stranded (ds)-RNA in infected Vero cells. Electron microscopy (EM) analysis of SARS-CoV-2 infected Vero cells show viral particles colocalizing with LDs, suggestive that LDs might serve as an assembly platform. Pharmacological modulation of LD formation by inhibition of DGAT-1 with A922500 significantly inhibited SARS-CoV-2 replication as well as reduced production of mediators pro-inflammatory response. Taken together, we demonstrate the essential role of lipid metabolic reprograming and LD formation in SARS-CoV-2 replication and pathogenesis, opening new opportunities for therapeutic strategies to COVID-19.


Assuntos
COVID-19/complicações , Mediadores da Inflamação/metabolismo , Inflamação/etiologia , Gotículas Lipídicas/patologia , SARS-CoV-2/isolamento & purificação , Animais , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Estudos de Casos e Controles , Chlorocebus aethiops , Humanos , Inflamação/metabolismo , Inflamação/patologia , Células Vero , Replicação Viral
4.
Blood ; 136(11): 1330-1341, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32678428

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent pathogen responsible for the coronavirus disease 2019 (COVID-19). Since its emergence, the novel coronavirus has rapidly achieved pandemic proportions causing remarkably increased morbidity and mortality around the world. A hypercoagulability state has been reported as a major pathologic event in COVID-19, and thromboembolic complications listed among life-threatening complications of the disease. Platelets are chief effector cells of hemostasis and pathological thrombosis. However, the participation of platelets in the pathogenesis of COVID-19 remains elusive. This report demonstrates that increased platelet activation and platelet-monocyte aggregate formation are observed in severe COVID-19 patients, but not in patients presenting mild COVID-19 syndrome. In addition, exposure to plasma from severe COVID-19 patients increased the activation of control platelets ex vivo. In our cohort of COVID-19 patients admitted to the intensive care unit, platelet-monocyte interaction was strongly associated with tissue factor (TF) expression by the monocytes. Platelet activation and monocyte TF expression were associated with markers of coagulation exacerbation as fibrinogen and D-dimers, and were increased in patients requiring invasive mechanical ventilation or patients who evolved with in-hospital mortality. Finally, platelets from severe COVID-19 patients were able to induce TF expression ex vivo in monocytes from healthy volunteers, a phenomenon that was inhibited by platelet P-selectin neutralization or integrin αIIb/ß3 blocking with the aggregation inhibitor abciximab. Altogether, these data shed light on new pathological mechanisms involving platelet activation and platelet-dependent monocyte TF expression, which were associated with COVID-19 severity and mortality.


Assuntos
Betacoronavirus/imunologia , Transtornos da Coagulação Sanguínea/patologia , Plaquetas/patologia , Infecções por Coronavirus/complicações , Monócitos/patologia , Pneumonia Viral/complicações , Tromboplastina/metabolismo , Adulto , Biomarcadores/metabolismo , Transtornos da Coagulação Sanguínea/imunologia , Transtornos da Coagulação Sanguínea/metabolismo , Transtornos da Coagulação Sanguínea/virologia , Plaquetas/metabolismo , Plaquetas/virologia , COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Monócitos/virologia , Selectina-P/metabolismo , Pandemias , Ativação Plaquetária , Pneumonia Viral/imunologia , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Prognóstico , Estudos Prospectivos , SARS-CoV-2 , Taxa de Sobrevida
5.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445741

RESUMO

(1) Background: coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been linked to hematological dysfunctions, but there are little experimental data that explain this. Spike (S) and Nucleoprotein (N) proteins have been putatively associated with these dysfunctions. In this work, we analyzed the recruitment of hemoglobin (Hb) and other metabolites (hemin and protoporphyrin IX-PpIX) by SARS-Cov2 proteins using different approaches. (2) Methods: shotgun proteomics (LC-MS/MS) after affinity column adsorption identified hemin-binding SARS-CoV-2 proteins. The parallel synthesis of the peptides technique was used to study the interaction of the receptor bind domain (RBD) and N-terminal domain (NTD) of the S protein with Hb and in silico analysis to identify the binding motifs of the N protein. The plaque assay was used to investigate the inhibitory effect of Hb and the metabolites hemin and PpIX on virus adsorption and replication in Vero cells. (3) Results: the proteomic analysis by LC-MS/MS identified the S, N, M, Nsp3, and Nsp7 as putative hemin-binding proteins. Six short sequences in the RBD and 11 in the NTD of the spike were identified by microarray of peptides to interact with Hb and tree motifs in the N protein by in silico analysis to bind with heme. An inhibitory effect in vitro of Hb, hemin, and PpIX at different levels was observed. Strikingly, free Hb at 1mM suppressed viral replication (99%), and its interaction with SARS-CoV-2 was localized into the RBD region of the spike protein. (4) Conclusions: in this study, we identified that (at least) five proteins (S, N, M, Nsp3, and Nsp7) of SARS-CoV-2 recruit Hb/metabolites. The motifs of the RDB of SARS-CoV-2 spike, which binds Hb, and the sites of the heme bind-N protein were disclosed. In addition, these compounds and PpIX block the virus's adsorption and replication. Furthermore, we also identified heme-binding motifs and interaction with hemin in N protein and other structural (S and M) and non-structural (Nsp3 and Nsp7) proteins.


Assuntos
COVID-19/etiologia , Hemoglobinas/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , COVID-19/sangue , Hemina/metabolismo , Hemoglobinas/ultraestrutura , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios Proteicos , Proteômica , Protoporfirinas/metabolismo , SARS-CoV-2/patogenicidade , Proteínas não Estruturais Virais/ultraestrutura , Proteínas Estruturais Virais/ultraestrutura , Ligação Viral , Replicação Viral
7.
ACS Omega ; 9(10): 11418-11430, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496952

RESUMO

The urgent need for effective treatments against emerging viral diseases, driven by drug-resistant strains and new viral variants, remains critical. We focus on inhibiting the human dihydroorotate dehydrogenase (HsDHODH), one of the main enzymes responsible for pyrimidine nucleotide synthesis. This strategy could impede viral replication without provoking resistance. We evaluated naphthoquinone fragments, discovering potent HsDHODH inhibition with IC50 ranging from 48 to 684 nM, and promising in vitro anti-SARS-CoV-2 activity with EC50 ranging from 1.2 to 2.3 µM. These compounds exhibited low toxicity, indicating potential for further development. Additionally, we employed computational tools such as molecular docking and quantitative structure-activity relationship (QSAR) models to analyze protein-ligand interactions, revealing that these naphthoquinones exhibit a protein binding pattern similar to brequinar, a potent HsDHODH inhibitor. These findings represent a significant step forward in the search for effective antiviral treatments and have great potential to impact the development of new broad-spectrum antiviral drugs.

8.
Front Cell Infect Microbiol ; 13: 1067285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875528

RESUMO

Introduction: Influenza A virus (IAV) is one of the leading causes of respiratory tract infections in humans, representing a major public health concern. The various types of cell death have a crucial role in IAV pathogenesis because this virus may trigger both apoptosis and necroptosis in airway epithelial cells in parallel. Macrophages play an important role in the clearance of virus particles, priming the adaptive immune response in influenza. However, the contribution of macrophage death to pathogenesis of IAV infection remains unclear. Methods: In this work, we investigated IAV-induced macrophage death, along with potential therapeutic intervention. We conducted in vitro and in vivo experiments to evaluate the mechanism and the contribution of macrophages death to the inflammatory response induced by IAV infection. Results: We found that IAV or its surface glycoprotein hemagglutinin (HA) triggers inflammatory programmed cell death in human and murine macrophages in a Toll-like receptor-4 (TLR4)- and TNF-dependent manner. Anti-TNF treatment in vivo with the clinically approved drug etanercept prevented the engagement of the necroptotic loop and mouse mortality. Etanercept impaired the IAV-induced proinflammatory cytokine storm and lung injury. Conclusion: In summary, we demonstrated a positive feedback loop of events that led to necroptosis and exacerbated inflammation in IAV-infected macrophages. Our results highlight an additional mechanism involved in severe influenza that could be attenuated with clinically available therapies.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Animais , Camundongos , Etanercepte , Inibidores do Fator de Necrose Tumoral , Apoptose , Macrófagos
9.
Lancet Reg Health Am ; 20: 100466, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36908503

RESUMO

Background: Repurposed drugs for treatment of new onset disease may be an effective therapeutic shortcut. We aimed to evaluate the efficacy of repurposed antivirals compared to placebo in lowering SARS-CoV2 viral load of COVID-19 patients. Methods: REVOLUTIOn is a randomised, parallel, blinded, multistage, superiority and placebo controlled randomised trial conducted in 35 centres in Brazil. We include patients aged 18 years or older admitted to hospital with laboratory-confirmed SARS-CoV-2 infection, symptoms onset 9 days or less and SpO2 94% or lower at room air were eligible. All participants were randomly allocated to receive either atazanavir, daclatasvir or sofosbuvir/daclatasvir or placebo for 10 days. The primary outcome was the decay rate (slope) of the SARS-CoV-2 viral load logarithm assessed in the modified intention to-treat population. This trial was registered with ClinicalTrials.gov, number NCT04468087. Findings: Between February 09, 2021, and August 04, 2021, 255 participants were enrolled and randomly assigned to atazanavir (n = 64), daclatasvir (n = 66), sofosbuvir/daclatasvir (n = 67) or placebo (n = 58). Compared to placebo group, the change from baseline to day 10 in log viral load was not significantly different for any of the treatment groups (0.05 [95% CI, -0.03 to 0.12], -0.02 [95% CI, -0.09 to 0.06], and -0.03 [95% CI, -0.11 to 0.04] for atazanavir, daclatasvir and sofosbuvir/daclatasvir groups respectively). There was no significant difference in the occurrence of serious adverse events between treatment groups. Interpretation: No significant reduction in viral load was observed from the use of atazanavir, daclatasvir or sofosbuvir/daclatasvir compared to placebo in hospitalised COVID-19 patients who need oxygen support with symptoms onset 9 days or less. Funding: Ministério da Ciência, Tecnologia e Inovação (MCTI) - Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ); Cia Latino-Americana de Medicamentos (Clamed); Cia Industrial H. Carlos Schneider (Ciser); Hospital Research Foundation Incorporation, Australia, HCor São Paulo; Blanver Farmoquímica; Instituto de Tecnologia em Fármacos (Farmanguinhos) da Fundação Oswaldo Cruz (Fiocruz); Coordenação Geral de Planejamento Estratégico (Cogeplan)/Fiocruz; and Fundação de apoio a Fiocruz (Fiotec, VPGDI-054-FIO-20-2-13).

10.
Bioorg Med Chem ; 19(6): 1860-5, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21376603

RESUMO

In this work, a new series of arysulfonylhydrazine-1H-1,2,3-triazole derivatives were synthesized, and their ability to inhibit the in vitro replication of HSV-1 was evaluated. Among the 1,2,3-triazole derivatives, 1-[(5″-methyl-1″-(4‴-fluorophenylamino)-1H-1,2,3-triazol-4″-yl)carbonyl]-2-(4'-methylphenylsulfonyl)hydrazine and 1-[(5'-methyl-1'-(2″,5″-dichlorophenylamino)-1H-1,2,3-triazol-4'-yl)carbonyl]-2-(phenylsulfonyl)hydrazine, with IC(50) values of 1.30 and 1.26 µM, respectively, displayed potent activity against HSV-1. Because these compounds have low cytotoxicity, their selectivity indices are high. Under the assay conditions, they have better performance than does the reference compound acyclovir. The structures of all of the compounds were confirmed by one- and two-dimensional NMR techniques ((1)H, (13)C-APT, COSY-(1)H×(1)H and HETCOR (1)J(CH)) and by elemental analysis.


Assuntos
Antivirais/síntese química , Herpesvirus Humano 1/efeitos dos fármacos , Triazóis/síntese química , Animais , Antivirais/química , Antivirais/toxicidade , Chlorocebus aethiops , Replicação do DNA/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Triazóis/química , Triazóis/toxicidade , Células Vero
11.
Vaccines (Basel) ; 9(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34579223

RESUMO

The COVID-19 pandemic has exposed the extent of global connectivity and collective vulnerability to emerging diseases. From its suspected origins in Wuhan, China, it spread to all corners of the world in a matter of months. The absence of high-performance, rapid diagnostic methods that could identify asymptomatic carriers contributed to its worldwide transmission. Serological tests offer numerous benefits compared to other assay platforms to screen large populations. First-generation assays contain targets that represent proteins from SARS-CoV-2. While they could be quickly produced, each actually has a mixture of specific and non-specific epitopes that vary in their reactivity for antibodies. To generate the next generation of the assay, epitopes were identified in three SARS-Cov-2 proteins (S, N, and Orf3a) by SPOT synthesis analysis. After their similarity to other pathogen sequences was analyzed, 11 epitopes outside of the receptor-binding domain (RBD) of the spike protein that showed high reactivity and uniqueness to the virus. These were incorporated into a ß-barrel protein core to create a highly chimeric protein. Another de novo protein was designed that contained only epitopes in the RBD. In-house ELISAs suggest that both multiepitope proteins can serve as targets for high-performance diagnostic tests. Our approach to bioengineer chimeric proteins is highly amenable to other pathogens and immunological uses.

12.
PeerJ ; 9: e12595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35036128

RESUMO

SARS-CoV-2 infects cardiac cells and causes heart dysfunction. Conditions such as myocarditis and arrhythmia have been reported in COVID-19 patients. The Sigma-1 receptor (S1R) is a ubiquitously expressed chaperone that plays a central role in cardiomyocyte function. S1R has been proposed as a therapeutic target because it may affect SARS-CoV-2 replication; however, the impact of the inhibition of S1R in human cardiomyocytes remains to be described. In this study, we investigated the consequences of S1R inhibition in iPSC-derived human cardiomyocytes (hiPSC-CM). SARS-CoV-2 infection in hiPSC-CM was productive and reduced cell survival. S1R inhibition decreased both the number of infected cells and viral particles after 48 hours. S1R inhibition also prevented the release of pro-inflammatory cytokines and cell death. Although the S1R antagonist NE-100 triggered those protective effects, it compromised cytoskeleton integrity by downregulating the expression of structural-related genes and reducing beating frequency. Our findings suggest that the detrimental effects of S1R inhibition in human cardiomyocytes' integrity may abrogate its therapeutic potential against COVID and should be carefully considered.

13.
PeerJ ; 9: e12262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707939

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can infect several organs, especially impacting respiratory capacity. Among the extrapulmonary manifestations of COVID-19 is myocardial injury, which is associated with a high risk of mortality. Myocardial injury, caused directly or indirectly by SARS-CoV-2 infection, can be triggered by inflammatory processes that lead to damage to the heart tissue. Since one of the hallmarks of severe COVID-19 is the "cytokine storm", strategies to control inflammation caused by SARS-CoV-2 infection have been considered. Cannabinoids are known to have anti-inflammatory properties by negatively modulating the release of pro-inflammatory cytokines. Herein, we investigated the effects of the cannabinoid agonist WIN 55,212-2 (WIN) in human iPSC-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2. WIN did not modify angiotensin-converting enzyme II protein levels, nor reduced viral infection and replication in hiPSC-CMs. On the other hand, WIN reduced the levels of interleukins six, eight, 18 and tumor necrosis factor-alpha (TNF-α) released by infected cells, and attenuated cytotoxic damage measured by the release of lactate dehydrogenase (LDH). Our findings suggest that cannabinoids should be further explored as a complementary therapeutic tool for reducing inflammation in COVID-19 patients.

14.
iScience ; 24(11): 103315, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34723156

RESUMO

We used the recombinant trimeric spike (S) glycoprotein in the prefusion conformation to immunize horses for the production of hyperimmune globulins against SARS-CoV-2. Serum antibody titers measured by ELISA were above 1:106, and the neutralizing antibody titer against authentic virus (WT) was 1:14,604 (average PRNT90). Plasma from immunized animals was pepsin digested to remove the Fc portion and purified, yielding an F(ab')2 preparation with PRNT90 titers 150-fold higher than the neutralizing titers in human convalescent plasma. Challenge studies were carried out in hamsters and showed the in vivo ability of equine F(ab')2 to reduce viral load in the pulmonary tissues and significant clinical improvement determined by weight gain. The neutralization curve by F(ab')2 was similar against the WT and P.2 variants, but displaced to higher concentrations by 0.39 log units against the P.1 (Gamma) variant. These results support the possibility of using equine F(ab')2 preparation for the clinical treatment of COVID patients.

15.
Antiviral Res ; 182: 104859, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32649965

RESUMO

The outbreaks of Zika virus (ZIKV) infection in Brazil, 2015-2016, were associated with severe congenital malformations. Our translational study aimed to test the efficacy of the antiviral agent sofosbuvir (SOF) against vertical transmission of ZIKV and the associated congenital syndrome (CZS), using a rhesus monkey model. Eight pregnant macaques were successfully infected during the organogenesis phase with a Brazilian ZIKV strain; five of them received SOF from two to fifteen days post-infection. Both groups of dams showed ZIKV-associated clinical signals, detectable ZIKV RNA in several specimens, specific anti-ZIKV IgM and IgG antibodies, and maternal neutralizing antibodies. However, malformations occurred only among non-treated dam offspring. Compared to non-treated animals, all SOF-treated dams had a shorter ZIKV viremia and four of five neonates had undetectable ZIKV RNA in blood and tissue samples. These results support further clinical evaluations aiming for the prevention of CZS.


Assuntos
Antivirais/uso terapêutico , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Sofosbuvir/uso terapêutico , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/transmissão , Zika virus/efeitos dos fármacos , Animais , Anticorpos Antivirais/sangue , Antivirais/administração & dosagem , Brasil , Feminino , Macaca mulatta , Gravidez , Complicações Infecciosas na Gravidez/prevenção & controle , Complicações Infecciosas na Gravidez/virologia , Sofosbuvir/administração & dosagem , Pesquisa Translacional Biomédica , Viremia/tratamento farmacológico , Viremia/prevenção & controle , Zika virus/imunologia , Infecção por Zika virus/congênito , Infecção por Zika virus/tratamento farmacológico
16.
Nat Biotechnol ; 37(2): 160-168, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30718881

RESUMO

Metagenomic sequencing has the potential to transform microbial detection and characterization, but new tools are needed to improve its sensitivity. Here we present CATCH, a computational method to enhance nucleic acid capture for enrichment of diverse microbial taxa. CATCH designs optimal probe sets, with a specified number of oligonucleotides, that achieve full coverage of, and scale well with, known sequence diversity. We focus on applying CATCH to capture viral genomes in complex metagenomic samples. We design, synthesize, and validate multiple probe sets, including one that targets the whole genomes of the 356 viral species known to infect humans. Capture with these probe sets enriches unique viral content on average 18-fold, allowing us to assemble genomes that could not be recovered without enrichment, and accurately preserves within-sample diversity. We also use these probe sets to recover genomes from the 2018 Lassa fever outbreak in Nigeria and to improve detection of uncharacterized viral infections in human and mosquito samples. The results demonstrate that CATCH enables more sensitive and cost-effective metagenomic sequencing.


Assuntos
Biologia Computacional/métodos , Genoma Viral , Metagenoma , Metagenômica , Animais , Culicidae/virologia , Surtos de Doenças , Biblioteca Gênica , Variação Genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Febre Lassa/virologia , Nigéria/epidemiologia , Sondas de Oligonucleotídeos , Oligonucleotídeos/genética , Análise de Sequência de DNA , Viroses
17.
Bioorg Med Chem ; 16(1): 313-21, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17937990

RESUMO

Herpes Simplex Virus (HSV) infections are among the most common human diseases. In this work, we assess the structural features and electronic properties of a series of ten 1-hydroxyacridone derivatives (1a-j) recently described as a new class of non-nucleoside inhibitors of Herpes Simplex Virus-1 (HSV-1). Based on these molecules, we applied rigid analogue and isosteric replacement approaches to design and synthesize nine new 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridine derivatives (2a-i). The biological and computational results of these new molecules were compared with 1-hydroxyacridones. An inhibitory profile was observed in 10-Cl substituted 3H-benzo[b]pyrazolo[3,4-h]-1,6-naphthyridine derivative (2f), which presents the same substituent at the analogous position of 1-hydroxyacridone derivative (1b). The structure-activity relationship (SAR) studies pointed out the 10-position next to nitrogen atom as important for the anti-HSV-1 profile in the pyrazolo-naphthyridine derivatives tested, which reinforced the promising profile for further experimental investigation. The most potent acridone and pyrazolo-naphthridine derivatives were also submitted to an in silico ADMET screening in order to determine their overall drug-score, which confirmed their potential antiviral profile.


Assuntos
Acridinas/química , Antivirais/química , Herpesvirus Humano 1/efeitos dos fármacos , Naftiridinas/química , Naftiridinas/farmacologia , Acridinas/farmacologia , Acridonas , Antivirais/farmacologia , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Relação Estrutura-Atividade
18.
Curr Top Med Chem ; 18(17): 1494-1505, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30370848

RESUMO

BACKGROUND: According to the World Health Organization (WHO), the fight against Acquired Immunodeficiency Syndrome (AIDS) is still one of the most significant challenges facing humanity. Worldwide, it is estimated that 36.7 million people are infected by the Human Immunodeficiency Virus (HIV). Despite the variety of available drugs, the search for new enzymatic inhibitors of HIV is still important due to the presence of adverse effects and the development of resistant strains. Therefore, the present study aimed to design, synthesize, and biologically evaluate novel inhibitors of HIV Reverse Transcriptase (RT). MATERIALS AND METHODS: These compounds were obtained in two series, and compounds in both series contain a 1,2,3-triazole ring in their structures. The compounds in the first series are Efavirenz (EFV) analogues with the N-1 position substituted by another important fragment as described in the medicinal chemistry literature on anti-HIV drugs. The second series has a phosphonate chain similar to that in the structure of Tenofovir Disoproxil Fumarate (TDF). RESULTS AND CONCLUSION: The results of the biological evaluation showed that all compounds presented high RT inhibition values and lower or comparable inhibitory concentrations (the concentration needed to reduce the enzymatic activity by 50%, IC50 values, 0.8-1.9 µM). Among the compounds in the first series, the three with the lowest IC50 values had values between 0.8-0.9 µM, and of those in the second series, the most potent had an IC50 value of 1.1 µM; compounds in both series were equipotent to TDF (1.2 µM). Thus, the new compounds could be considered lead compounds for the development of new antiretroviral compounds.


Assuntos
Fármacos Anti-HIV/farmacologia , Benzoxazinas/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Organofosfonatos/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Triazóis/farmacologia , Alcinos , Fármacos Anti-HIV/química , Benzoxazinas/química , Ciclopropanos , Relação Dose-Resposta a Droga , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Organofosfonatos/química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade , Triazóis/química
19.
Med Chem ; 14(3): 242-248, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28875856

RESUMO

BACKGROUND: Low molecular weight 1-Aryl-1H-1,2,3-triazoles are endowed with various types of biological activities, such as against cancer, HIV and bacteria. Despite the existence of six different classes of antiretroviral drugs in clinical use, HIV/AIDS continue to be an on growing public health problem. OBJECTIVE: In the present study, we synthesized and evaluated thirty 1-Aryl-1H-1,2,3-triazoles against HIV replication. METHOD: The compounds were prepared by Huisgen 1,3-dipolar cycloaddition protocol catalyzed by Cu(I) between aryl azides and propargylic alcohol followed by further esterification and etherification from a nucleophilic substitution with acid chlorides or alkyl bromides in good yields. The compounds were submitted to the inhibition of HIV replication and evaluation of their cytotoxicity. Initially, the compounds were screened at 10 µM and the most active were further evaluated in order to obtain some pharmacological parameters. RESULTS: Thirty molecules were evaluated, six were selected - because they inhibited more than 80% HIV replication. We further showed that two of these compounds are 8-times more potent, and less cytotoxic, than nevirapine, an antiretroviral drug in clinical use. CONCLUSION: We identified very simple triazoles with promissing antiretroviral activities that led to the development of new drugs against AIDS.


Assuntos
Fármacos Anti-HIV/farmacologia , Triazóis/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/toxicidade , Reação de Cicloadição , Esterificação , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Leucócitos Mononucleares/virologia , Nevirapina/farmacologia , Triazóis/síntese química , Triazóis/toxicidade , Replicação Viral/efeitos dos fármacos
20.
Eur J Med Chem ; 127: 434-441, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28092859

RESUMO

Zika virus (ZIKV), an emerging Flavivirus, was recently associated with severe neurological complications and congenital diseases. Therefore, development of antiviral agents capable of inhibiting ZIKV replication is urgent. Chloroquine is a molecule with a confirmed safety history for use with pregnant women, and has been found to exhibit anti-ZIKV activity at concentrations around 10 µM. This suggests that modifications to the chloroquine structure could be promising for obtaining more effective anti-ZIKV agents. Here, we report the ability of a series of N-(2-(arylmethylimino)ethyl)-7-chloroquinolin-4-amine derivatives to inhibit ZIKV replication in vitro. We have found that the quinoline derivative, N-(2-((5-nitrofuran-2-yl)methylimino)ethyl)-7-chloroquinolin-4-amine, 40, was the most potent compound within this series, reducing ZIKV replication by 72% at 10 µM. Compound 40 exhibits an EC50 value of 0.8 ± 0.07 µM, compared to that of chloroquine of 12 ± 3.2 µM. Good activities were also obtained for other compounds, including those with aryl groups = phenyl, 4-fluorophenyl, 4-nitrophenyl, 2,6-dimethoxyphenyl, 3-pyridinyl and 5-nitrothien-2-yl. Syntheses of these quinoline derivatives have been obtained both by thermal and ultrasonic means. The ultrasonic method produced comparable yields to the thermal (reflux) method in very much shorter times 30-180 s compared to 30-180 min reactions times. These results indicate that this group of compounds is a good follow-up point for the potential discovery of new drugs against the Zika disease.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Cloroquina/síntese química , Cloroquina/farmacologia , Temperatura , Ondas Ultrassônicas , Zika virus/efeitos dos fármacos , Animais , Antivirais/química , Chlorocebus aethiops , Cloroquina/química , Cloroquina/toxicidade , Células Vero , Replicação Viral/efeitos dos fármacos , Zika virus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA