RESUMO
Environmental heavy-metals contamination is a worldwide concern and the treatment of their sources constitutes a sustainable and efficient alternative. This work investigated the performance of Malpighia emarginataD.C. seed fibers microparticles (Me-SFMp) as biosorption platform for heavy metal ions. Integrated physicochemical analyses (FAAS, FTIR, SEM/EDS and XRF) showed that such ability was associated with the high microstructural porosity, wide surface area and diversity of functional groups on Me-SFMp structures, which favored the high and fast uptake of the target-substances (Cd, Zn, Cr, Pb, Cu and Ni ions). In terms of reactional kinetics, the pseudo-second order model showed better data correlation (R2 from 0.9992 to 0.9998) and suggested the chemisorption as limiting step of the reaction mechanisms. From the Langmuir isotherms (R2 from 0.9993 to 0.9998), it was observed that these phenomena occurred non-linearly on a homogeneous biosorbent monolayer. Me-SFMp can also be reused after desorption processes conducted in acid medium and, under ideal conditions (0.8â¯g biosorbent dosage; 100â¯mL of 1.00â¯mgâ¯L-1 multi-metal solution adjusted to pHâ¯=â¯8.0; 300â¯rpm stirring speed; and 60â¯min contact time), the following maximum removal percentages order was observed for the first cycle: Cd (100%) = Zn (100%) > Cr (95.1%) > Pb (86.8%) > Cu (84.2%) > Ni (81.0%). The procedure was successfully applied to remove the studied heavy metal ions from raw landfill leachate, even in the presence of several (in)organic interferers, reinforcing the strong biosorbent-adsorbate interaction and the viability of this proposal.