Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(5)2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29883404

RESUMO

Uncovering the biological role of nuclear receptor peroxisome proliferator-activated receptors (PPARs) has greatly advanced our knowledge of the transcriptional control of glucose and energy metabolism. As such, pharmacological activation of PPARγ has emerged as an efficient approach for treating metabolic disorders with the current use of thiazolidinediones to improve insulin resistance in diabetic patients. The recent identification of growth hormone releasing peptides (GHRP) as potent inducers of PPARγ through activation of the scavenger receptor CD36 has defined a novel alternative to regulate essential aspects of lipid and energy metabolism. Recent advances on the emerging role of CD36 and GHRP hexarelin in regulating PPARγ downstream actions with benefits on atherosclerosis, hepatic cholesterol biosynthesis and fat mitochondrial biogenesis are summarized here. The response of PPARγ coactivator PGC-1 is also discussed in these effects. The identification of the GHRP-CD36-PPARγ pathway in controlling various tissue metabolic functions provides an interesting option for metabolic disorders.


Assuntos
Antígenos CD36/metabolismo , Doenças Metabólicas/metabolismo , PPAR gama/metabolismo , Transdução de Sinais , Animais , Antígenos CD36/agonistas , Descoberta de Drogas , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Humanos , Resistência à Insulina , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/patologia , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , PPAR gama/agonistas , Transdução de Sinais/efeitos dos fármacos
2.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37131604

RESUMO

We present the nELISA, a high-throughput, high-fidelity, and high-plex protein profiling platform. DNA oligonucleotides are used to pre-assemble antibody pairs on spectrally encoded microparticles and perform displacement-mediated detection. Spatial separation between non-cognate antibodies prevents the rise of reagent-driven cross-reactivity, while read-out is performed cost-efficiently and at high-throughput using flow cytometry. We assembled an inflammatory panel of 191 targets that were multiplexed without cross-reactivity or impact on performance vs 1-plex signals, with sensitivities as low as 0.1pg/mL and measurements spanning 7 orders of magnitude. We then performed a large-scale secretome perturbation screen of peripheral blood mononuclear cells (PBMCs), with cytokines as both perturbagens and read-outs, measuring 7,392 samples and generating ~1.5M protein datapoints in under a week, a significant advance in throughput compared to other highly multiplexed immunoassays. We uncovered 447 significant cytokine responses, including multiple putatively novel ones, that were conserved across donors and stimulation conditions. We also validated the nELISA's use in phenotypic screening, and propose its application to drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA