RESUMO
The vaginal microbiota of the queen (i.e., female cat) has never been described using culture independent methods. The objectives of the present research were to describe the vaginal microbiota of healthy domestic shorthair queens using both 16S rRNA sequencing and culture, and to assess the effects of age, living environment, and reproductive season on its composition. Thirty queens undergoing elective ovariectomy were included in the study. The vaginal samples were collected just before surgery, from animals under general anaesthesia. Two consecutive mini-swabs were introduced in the queens' vaginal tract. A preliminary study with 10 healthy queens aimed to negate sampling order's effect. Two consecutive samples for sequencing (5 queens, 10 swabs) and culture (5 queens, 10 swabs) were collected, confirming a match (100 % in culture, Bray-Curtis P = 0.96 in sequencing). The experiment included 20 queens that were prospectively grouped based on age (prepubertal N = 10, adult N = 10), living environment (indoor N = 10, outdoor N = 10), and time of the year, whether during the reproductive season (N = 10) or during seasonal anoestrous (N = 10). Bacteria were identified through metataxonomic analysis, amplifying the V1-V2 regions of 16S rRNA gene, and through standard culture followed by MALDI-TOF MS. The feline vaginal microbiota is dominated by Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteria. Escherichia-Shigella, Streptococcus, and Pasteurella were the most abundant genera. Although culture underestimated bacterial richness and diversity compared to sequencing, Escherichia and Streptococcus were the most isolated bacteria. No bacterial growth was observed in 15 % of samples (N = 3/20), whereas growth of one or two bacterial species was observed in 64.7 % (N = 11/17) and 35.3 % (N = 6/17) of cases, respectively. No differences in terms of alpha (Kruskal-Wallis rank sum test P = 0.65) and beta diversity (Bray-Curtis, Unweighted and Weighted UniFrac analyses P > 0.5) were observed. Although a difference in alpha diversity based on phylogenetic tree (P = 0.02) was detected between indoor and outdoor queens. In conclusion, mixed and monoculture of Escherichia coli, Streptococcus canis, Staphylococcus felis, and Enterococcus spp. are normal findings within the cat vagina. Age and reproductive season do not influence the feline vaginal microbiota, whereas further research is needed to elucidate the role of the living environment.
Assuntos
Bactérias , Microbiota , RNA Ribossômico 16S , Vagina , Animais , Gatos , Feminino , Vagina/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Estações do AnoRESUMO
Although usually harmless, Staphylococcus spp. can cause nosocomial and community-onset skin and soft tissue infections in both humans and animals; thus, it is considered a significant burden for healthcare systems worldwide. Companion animals have been identified as potential reservoirs of pathogenic Staphylococcus with specific reference to Methicillin Resistant Staphylococcus aureus (MRSA). In this study, we investigated the circulation and the genetic relationships of a collection of Staphylococcus spp. isolates in a family composed of four adults (a mother, father, grandmother, and grandfather), one child, and a dog, which were sampled over three years. The routes of transmission among humans and between humans and the dog werelyzed. The results displayed the circulation of many Staphylococcus lineages, belonging to different species and sequence types (ST) and being related to both human and pet origins. However, among the observed host-switch events, one of them clearly underpinnthroponotic route from a human to a dog. This suggests that companion animals can potentially have a role as a carrier of Staphylococcus, thus posing a serious concern about MRSA spreading within human and animal microbial communities.
RESUMO
A 15-day-old, female, captive Panthera tigris cub was hospitalized after developing severe hyperthermia, depression, and lack of appetite. The clinical condition rapidly worsened, and the tiger cub died in 72 h after the onset of neurological symptoms, septic shock, and multiple organ dysfunction syndrome. The postmortem main gross findings consisted of a severe and diffuse bilateral fibrino-suppurative meningoencephalitis and ventriculitis, mild fibrinous and sero-hemorrhagic polyserositis and cystitis, severe pulmonary edema, and hemorrhages. Microscopically, the meninges, ependyma, and choroid plexuses were diffusely expanded by abundant infiltration of neutrophils and macrophages, with multifocal fibrinous exudation. Histiocytic interstitial pneumonia, fibrinous and neutrophilic polyserositis, and pyelocystitis were also observed. Vascular thrombosis with multifocal vasculitis and vascular necrosis were frequently observed. Aerobic and anaerobic cultures performed on the brain, lungs, intestine, kidneys, and in pericardial effusion reported the presence of Salmonella enterica subsp. enterica serovar Enteritidis. Environmental and nutritional contamination were identified as putative sources of infections. To the best of the authors' knowledge, this is the first report of Salmonella Enteritidis septicemia with meningoencephalitis in a tiger cub, which highlights the need to further investigate the cause of acute perinatal death to reduce the risk of infectious disease outbreaks.