RESUMO
Cure of severe infections, sepsis, and septic shock with antimicrobial drugs is a challenge because morbidity and mortality in these conditions are essentially caused by improper immune response. We have tested the hypothesis that repeated reactivation of established memory to pathogens may reset unfavorable immune responses. We have chosen for this purpose a highly stringent mouse model of polymicrobial sepsis by cecum ligation and puncture. Five weeks after priming with a diverse Ag pool, high-grade sepsis was induced in C57BL/6j mice that was lethal in 24 h if left untreated. Antimicrobial drug (imipenem) alone rescued 9.7% of the animals from death, but >5-fold higher cure rate could be achieved by combining imipenem and two rechallenges with the Ag pool (p < 0.0001). Antigenic stimulation fine-tuned the immune response in sepsis by contracting the total CD3+ T cell compartment in the spleen and disengaging the hyperactivation state in the memory T subsets, most notably CD8+ T cells, while preserving the recovery of naive subsets. Quantitative proteomics/lipidomics analyses revealed that the combined treatment reverted the molecular signature of sepsis for cytokine storm, and deregulated inflammatory reaction and proapoptotic environment, as well as the lysophosphatidylcholine/phosphatidylcholine ratio. Our results showed the feasibility of resetting uncontrolled hyperinflammatory reactions into ordered hypoinflammatory responses by memory reactivation, thereby reducing morbidity and mortality in antibiotic-treated sepsis. This beneficial effect was not dependent on the generation of a pathogen-driven immune response itself but rather on the reactivation of memory to a diverse Ag pool that modulates the ongoing response.
Assuntos
Sepse/imunologia , Animais , Apoptose/imunologia , Complexo CD3/imunologia , Linfócitos T CD8-Positivos/imunologia , Ceco/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Memória Imunológica/imunologia , Inflamação/imunologia , Lipidômica/métodos , Lisofosfatidilcolinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilcolinas/imunologia , Proteômica/métodos , Choque Séptico/imunologia , Baço/imunologiaRESUMO
Besides their role in fighting viral infection and tumor resistance, recent studies have shown that NK cells also participate in the immune response against other infectious diseases. The aim of this study was to characterize the possible role of NK cells in the immune response against Paracoccidioides brasiliensis. Purified NK cells from paracoccidioidomycosis patients and healthy individuals were incubated with P. brasiliensis yeast cells or P. brasiliensis-infected monocytes, with or without the addition of recombinant IL-15. We found that NK cells from paracoccidioidomycosis patients exhibit a lower cytotoxic response compared with healthy individuals. NK cells are able directly to recognize and kill P. brasiliensis yeast cells, and this activity seems to be granule-dependent but perforin-independent, whereas the cytotoxicity against P. brasiliensis-infected monocytes is perforin-dependent. These results indicate that NK cells participate actively in the immune response against the P. brasiliensis infection either by directly destroying yeast cells or by recognizing and killing infected cells. Granulysin is the possible mediator of the cytotoxic effect, as the reduced cytotoxic activity against the yeast cells detected in patients with paracoccidioidomycosis is accompanied by a significantly lower frequency of CD56(+)granulysin(+) cells compared with that in healthy controls. Furthermore, we show that NK cells released granulysin in cultures after being stimulated by P. brasiliensis, and this molecule is able to kill the yeast cells in a dose-dependent manner. Another important finding is that stimulated NK cells are able to produce proinflammatory cytokines (IFN-γ and TNF-α) supporting their immunomodulatory role in the infection.
Assuntos
Citotoxicidade Imunológica/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Paracoccidioidomicose/patologia , Antifúngicos/farmacologia , Antígenos de Diferenciação de Linfócitos T/fisiologia , Movimento Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Humanos , Imunofenotipagem/métodos , Mediadores da Inflamação/fisiologia , Interferon gama/biossíntese , Células K562 , Células Matadoras Naturais/microbiologia , Ativação Linfocitária/imunologia , Paracoccidioides/patogenicidade , Paracoccidioidomicose/terapia , Fator de Necrose Tumoral alfa/biossínteseRESUMO
Chimeric antigen receptor (CAR) T cell immunotherapy for the treatment of cancer is now an approved treatment for B cell malignancies. However, the use of viral vectors to provide long-term CAR expression is associated with high production costs and cumbersome quality controls, impacting the final cost of CAR T cell therapies. Nonviral integrative vectors, such as Sleeping Beauty (SB) transposons, provide an alternative to modify primary T cells. Therefore, we developed a protocol to expand SB-transfected 19BBζ CAR T cells using a lymphoblastoid cell line, and evaluated T cell phenotype as well as function along the T cell expansion. Electroporation of PBMCs with transposon plasmid decreased cell viability on day 1 but had a minor impact on the frequency of memory subpopulations when compared to mock condition. CAR+ lymphocytes showed increased proliferation compared to mock control and high cytotoxic activity towards CD19+ cells without significant differences in exhaustion markers expression. Moreover, CAR+ lymphocytes showed an increased frequency by the end of the stimulation cycle compared with day 1, suggesting that CAR expression confers a selective proliferation advantage. Immunodeficient NOD scid gamma chain knockout (NSG) mice engrafted with the human pre-B leukemic cell line RS4;11 and treated with 19BBζ CAR T cells showed improved overall survival when compared to mock T cells treated animals. The results showed that electroporation using the SB system is a simple and affordable method for inducing long-term CAR expression in T lymphocytes. Expansion of gene-modified T cells with the lymphoblastoid cell line provided up to 2 cycles of stimulations, generating effective T cells against leukemia in vitro and in vivo.