Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(19): e9866, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39041642

RESUMO

RATIONALE: Helium (He) and energy shortages have caused price increases and reduced their availability. Using three combustion reactions per acquisition of carbon and nitrogen isotope ratios saves 50% He and energy during the elemental analysis/isotope ratio mass spectrometry (EA/IRMS). This approach needs to be tested for sulfur isotope (δ34S) analyses. METHODS: A new method to measure δ34S in three sequential combustion reactions within one EA/IRMS acquisition was developed. The same material or blank samples could be used in the three reactions. After SO2 was used, a N2 purging method was employed to prolong the lifetime of the valves in the EA/IRMS interface. The 3×EA/IRMS was applied to measure δ34S in precious samples, such as Ag2S from acid-volatile and chromium-reducible sulfur extracted with a multiple-port setup. RESULTS: The 3×EA/IRMS-δ34S method was validated with replicate analyses of international reference materials and laboratory standards with a wide range of mineralogical compositions and δ34S values. The method provided a strategic advantage for the δ34S measurements of small precious samples (measured between blanks). The accuracy and precision of the 3×EA/IRMS values effectively matched those obtained using conventional EA/IRMS, with good agreement between the mean ± SD values and the recommended values with their uncertainties. CONCLUSIONS: Compared with the conventional EA/IRMS, the proposed method provides accurate and precise δ34S measurements of the sulfate and sulfide samples while saving approximately 50% of He, energy, SO2 reference gas, O2, analysis time, and cost. Notably, 3×EA/IRMS can provide up to three δ34S values unaffected by memory effects.

2.
Miner Depos ; 58(1): 37-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36644759

RESUMO

The abundance and types of reef-bearing carbonate platforms reflect the evolution of Devonian climate, with conspicuous microbial-algal reefs in the warm Early and Late Devonian and sponge-coral reefs in the cooler Middle Devonian. A dolomitized Wenlock-Lower Devonian microbial-algal reef-bearing carbonate platform hosts epigenetic copper-cobalt-germanium (Cu-Co-Ge) sulfide mineralization at Ruby Creek-Bornite in the Brooks Range, Alaska. Here, we present rhenium-osmium (Re-Os) radiometric ages and molybdenum and sulfur (δ98/95Mo = +2.04 to +5.48‰ and δ34S = -28.5 to -1.8‰) isotope variations for individual Cu-Co-Fe sulfide phases along the paragenetic sequence carrollite-bornite-pyrite. In the context of a hot, extensional passive margin, greenhouse conditions in the Early Devonian favored restriction of platform-top seawater circulation and episodic reflux of oxidized brines during growth of the carbonaceous carbonate platform. Molybdenum and sulfur isotope data signal the stepwise reduction of hot brines carrying Cu during latent reflux and geothermal circulation for at least ca. 15 million years from the Early Devonian until Cu-Co sulfide mineralization ca. 379-378 million years ago (Ma) in the Frasnian, Late Devonian (weighted mean of Re-Os model ages of carrollite at 379 ± 15 Ma [n = 4]; Re-Os isochron age of bornite at 378 ± 15 Ma [n = 6]). On the basis of petrographic relationships between sulfides and solid bitumen, and the Mo and S isotope data for sulfides, we imply that the endowment in critical metals (e.g., Co, Ge, Re) in the Ruby Creek-Bornite deposit is linked to the activity of primary producers that removed trace metals from the warm Early Devonian seawater and concentrated Co, Ge, and Re in algal-bacterial organic matter in carbonate sediments. Supplementary Information: The online version contains supplementary material available at 10.1007/s00126-022-01123-1.

3.
Anal Bioanal Chem ; 414(6): 2163-2179, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35066601

RESUMO

The stable isotope ratios of sulfur (δ34S relative to Vienna Cañon Diablo Troilite) in sulfates and sulfides determined by elemental analysis and isotope ratio mass spectrometry (EA/IRMS) have been proven to be a remarkable tool for studies of the (bio)geochemical sulfur cycles in modern and ancient environments. However, the use of EA/IRMS to measure δ34S in arsenides and sulfarsenides may not be straightforward. This difficulty can lead to potential health and environmental hazards in the workplace and analytical problems such as instrument contamination, memory effects, and a non-matrix-matched standardization of δ34S measurements with suitable reference materials. To overcome these practical and analytical challenges, we developed a procedure for sulfur isotope analysis of arsenides, which can also be safely used for EA/IRMS analysis of arsenic sulfides (i.e., realgar, orpiment, arsenopyrite, and arsenian pyrite), and mercury sulfides (cinnabar). The sulfur dioxide produced from off-line EA combustion was trapped in an aqueous barium chloride solution in a leak-free system and precipitated as barium sulfate after quantitative oxidation of hydrogen sulfite by hydrogen peroxide. The derived barium sulfate was analyzed by conventional EA/IRMS, which bracketed the δ34S values of the samples with three international sulfate reference materials. The protocol (BaSO4-EA/IRMS) was validated by analyses of reference materials and laboratory standards of sulfate and sulfides and achieved accuracy and precision comparable with those of direct EA/IRMS. The δ34S values determined by BaSO4-EA/IRMS in sulfides (arsenopyrite, arsenic, and mercury sulfides) samples from different origins were comparable to those obtained by EA/IRMS, and no sulfur isotope fractionations were introduced during sample preparation. We report the first sulfur isotope data of arsenides obtained by BaSO4-EA/IRMS.

4.
Proc Natl Acad Sci U S A ; 116(14): 6647-6652, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30894492

RESUMO

The Archean Eon was a time of predominantly anoxic Earth surface conditions, where anaerobic processes controlled bioessential element cycles. In contrast to "oxygen oases" well documented for the Neoarchean [2.8 to 2.5 billion years ago (Ga)], the magnitude, spatial extent, and underlying causes of possible Mesoarchean (3.2 to 2.8 Ga) surface-ocean oxygenation remain controversial. Here, we report δ15N and δ13C values coupled with local seawater redox data for Mesoarchean shales of the Mozaan Group (Pongola Supergroup, South Africa) that were deposited during an episode of enhanced Mn (oxyhydr)oxide precipitation between ∼2.95 and 2.85 Ga. Iron and Mn redox systematics are consistent with an oxygen oasis in the Mesoarchean anoxic ocean, but δ15N data indicate a Mo-based diazotrophic biosphere with no compelling evidence for a significant aerobic nitrogen cycle. We propose that in contrast to the Neoarchean, dissolved O2 levels were either too low or too limited in extent to develop a large and stable nitrate reservoir in the Mesoarchean ocean. Since biological N2 fixation was evidently active in this environment, the growth and proliferation of O2-producing organisms were likely suppressed by nutrients other than nitrogen (e.g., phosphorus), which would have limited the expansion of oxygenated conditions during the Mesoarchean.

5.
Proc Biol Sci ; 288(1959): 20211779, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34583582

RESUMO

Some sea slugs are able to steal functional chloroplasts (kleptoplasts) from their algal food sources, but the role and relevance of photosynthesis to the animal host remain controversial. While some researchers claim that kleptoplasts are slowly digestible 'snacks', others advocate that they enhance the overall fitness of sea slugs much more profoundly. Our analysis shows light-dependent incorporation of 13C and 15N in the albumen gland and gonadal follicles of the sea slug Elysia timida, representing translocation of photosynthates to kleptoplast-free reproductive organs. Long-chain polyunsaturated fatty acids with reported roles in reproduction were produced in the sea slug cells using labelled precursors translocated from the kleptoplasts. Finally, we report reduced fecundity of E. timida by limiting kleptoplast photosynthesis. The present study indicates that photosynthesis enhances the reproductive fitness of kleptoplast-bearing sea slugs, confirming the biological relevance of this remarkable association between a metazoan and an algal-derived organelle.


Assuntos
Gastrópodes , Aptidão Genética , Animais , Cloroplastos/metabolismo , Fotossíntese
6.
Proc Biol Sci ; 287(1940): 20202684, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33259760

RESUMO

The geometric framework of nutrition predicts that populations restricted to a single imbalanced diet should evolve post-ingestive nutritional compensation mechanisms bringing the blend of assimilated nutrients closer to physiological optimum. The evolution of such nutritional compensation is thought to be mainly driven by the ratios of major nutrients rather than overall nutritional content of the diet. We report experimental evolution of divergence in post-ingestive nutritional compensation in populations of Drosophila melanogaster adapted to diets that contained identical imbalanced nutrient ratios but differed in total nutrient concentration. Larvae from 'Selected' populations maintained for over 200 generations on a nutrient-poor diet with a 1 : 13.5 protein : carbohydrate ratio showed enhanced assimilation of nitrogen from yeasts and reduced assimilation of carbon from sucrose than 'Control' populations evolved on a diet with the same nutrient ratio but fourfold greater nutrient concentration. Compared to the Controls, the Selected larvae also accumulated less triglycerides relative to protein. This implies that the Selected populations evolved a higher assimilation rate of amino acids from the poor imbalanced diet and a lower assimilation of carbohydrates than Controls. Thus, the evolution of nutritional compensation may be driven by changes in total nutrient abundance, even if the ratios of different nutrients remain unchanged.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Dieta , Fenômenos Fisiológicos da Nutrição Animal , Animais , Drosophila melanogaster , Ingestão de Alimentos , Larva , Nutrientes , Estado Nutricional , Sacarose
8.
Anal Bioanal Chem ; 411(10): 2031-2043, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30714082

RESUMO

Recently, we reported that the carbon isotope composition of the solid residues obtained by freeze-drying white and red wines (δ13CWSR) could be used for tracing the water status of the vines whose grapes were used to produce them. Here, we compare different methods using δ13C values of other wine components, particularly those of whole wine (δ13CWW) obtained by elemental analysis and isotope ratio mass spectrometry (EA/IRMS) and of wine ethanol (δ13CWEtOH) obtained by gas chromatography/combustion/IRMS (GC/C/IRMS), for their suitability to assess the vine water status. The studied wines were obtained from field-grown cultivars (Vitis vinifera L. cv. Chasselas, Petite Arvine, and Pinot noir) under different water treatments during the 2009-2014 seasons and were the same wines in which the δ13CWSR was measured previously. The EA/IRMS method for whole wine used two successive EA analytical cycles in each acquisition period to reduce the residence time of the sample capsules in the autosampler. The sample aliquots for the EA/IRMS and GC/C/IRMS analyses were optimized for peak-size differences less than 10% between the sample and reference gas. For all wine varieties, the δ13CWW and δ13CWEtOH values were linearly correlated with the predawn leaf water potential (Ψpd) and therefore serve as reliable indicators of vine water status, as do the δ13C values for must sugars and wine solid residues. The strongest negative correlations with Ψpd were for δ13Csugars (r = -0.94, n = 54) and δ13CWEtOH (r = -0.91) and were lower but still highly significant (p < 0.00001) for δ13CWW (r = -0.71) and δ13CWSR (r = -0.70). An evaluation of the advantages and drawbacks of the different methods is presented, showing that the δ13C analysis of wine ethanol by GC/C/IRMS is the most appropriate.


Assuntos
Etanol/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Água/análise , Vinho/análise , Isótopos de Carbono/análise , Análise de Alimentos/métodos , Açúcares/análise , Vitis/química
9.
Environ Res ; 159: 394-405, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28846861

RESUMO

Soil water repellency (hydrophobicity) prevents water from wetting or infiltrating soils, triggering changes in the ecosystems. Fire may develop, enhance or destroy hydrophobicity in previously wettable or water-repellent soils. Soil water repellency is mostly influenced by the quality and quantity of soil organic matter, particularly the lipid fraction. Here we report the results of a study on the effect of fire on the distribution of soil lipids and their role in the hydrophobicity grade of six particle size fractions (2-1, 1-0.5, 0.5-0.25, 0.25-0.1, 0.1-0.05 and <0.05mm) of an Arenosol under Quercus suber canopy at the Doñana National Park (SW-Spain). Hydrophobicity was determined using water drop penetration time test. Field emission scanning electron microscopy (FESEM) was used to assess the presence and morphology of the inorganic and organic soil components in the particle size fractions. Soil lipids were Soxhlet extracted with a dichloromethane-methanol mixture. Fatty acids (FAs) and neutral lipids were separated, derivatized, identified and quantified by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. The hydrophobicity values of soil samples and fractions were statistically different (P < 0.05), for both, the unburnt and burnt soils, and particle size fractions. All samples displayed a similar distribution of FAs, straight-chain saturated acids in the C14-C32 range, and neutral lipids (n-alkan-1-ols, n-alkanes), only differing in their relative abundances. Among possible biogeochemical mechanisms responsible for the changes in soil lipids, the observed depletion of long chain FAs (C≥24) in the coarse fraction is best explained by thermal cracking caused by the heat of the fire. The enrichment of long chain FAs observed in other fractions suggests possible exogenous additions of charred, lipid-rich, material, like cork suberin or other plant-derived macromolecules (cutins). Principal component analysis was used to study the relationships between hydrophobicity with soil organic matter and its different components. Extractable organic matter (EOM) and specifically long chain FAs content were positively correlated to soil hydrophobicity. Therefore, the latter could be used as biomarkers surrogated to hydrophobicity in sandy soils.


Assuntos
Incêndios , Lipídeos/análise , Quercus , Solo/química , Ecossistema , Interações Hidrofóbicas e Hidrofílicas , Quercus/química , Espanha
10.
Appl Environ Microbiol ; 82(21): 6303-6316, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27542929

RESUMO

Mountain ecosystems are characterized by a diverse range of climatic and topographic conditions over short distances and are known to shelter a high biodiversity. Despite important progress, still little is known on bacterial diversity in mountain areas. Here, we investigated soil bacterial biogeography at more than 100 sampling sites randomly stratified across a 700-km2 area with 2,200-m elevation gradient in the western Swiss Alps. Bacterial grassland communities were highly diverse, with 12,741 total operational taxonomic units (OTUs) across 100 sites and an average of 2,918 OTUs per site. Bacterial community structure was correlated with local climatic, topographic, and soil physicochemical parameters with high statistical significance. We found pH (correlated with % CaO and % mineral carbon), hydrogen index (correlated with bulk gravimetric water content), and annual average number of frost days during the growing season to be among the groups of the most important environmental drivers of bacterial community structure. In contrast, bacterial community structure was only weakly stratified as a function of elevation. Contrasting patterns were discovered for individual bacterial taxa. Acidobacteria responded both positively and negatively to pH extremes. Various families within the Bacteroidetes responded to available phosphorus levels. Different verrucomicrobial groups responded to electrical conductivity, total organic carbon, water content, and mineral carbon contents. Alpine grassland bacterial communities are thus highly diverse, which is likely due to the large variety of different environmental conditions. These results shed new light on the biodiversity of mountain ecosystems, which were already identified as potentially fragile to anthropogenic influences and climate change. IMPORTANCE: This article addresses the question of how microbial communities in alpine regions are dependent on local climatic and soil physicochemical variables. We benefit from a unique 700-km2 study region in the western Swiss Alps region, which has been exhaustively studied for macro-organismal and fungal ecology, and for topoclimatic modeling of future ecological trends, but without taking into account soil bacterial diversity. Here, we present an in-depth biogeographical characterization of the bacterial community diversity in this alpine region across 100 randomly stratified sites, using 56 environmental variables. Our exhaustive sampling ensured the detection of ecological trends with high statistical robustness. Our data both confirm previously observed general trends and show many new detailed trends for a wide range of bacterial taxonomic groups and environmental parameters.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Pradaria , Consórcios Microbianos , Microbiologia do Solo , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Acidobacteria/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/fisiologia , Carbono , Mudança Climática , Ecossistema , Meio Ambiente , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Concentração de Íons de Hidrogênio , Fósforo , RNA Ribossômico 16S , Estações do Ano , Solo/química , Suíça
11.
Rapid Commun Mass Spectrom ; 30(23): 2447-2461, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27596945

RESUMO

RATIONALE: The carbon, hydrogen and oxygen stable isotope composition (δ13 C, δ2 H, and δ18 O values) of plants and their products is linked to photosynthetic fractionation, environmental factors and agricultural practices. Therefore, they contribute to determining the purity of commercial vegetable oils and may provide information on their geographical origin. METHODS: Maize, olive, sunflower, groundnut, soybean and rice oils differing in sites of growth in the southern and northern hemispheres were characterized by bulk oil stable isotope ratios (δ13 Cbulk , δ2 Hbulk , and δ18 Obulk values), fatty acid (FA) concentrations and δ13 CFA values using elemental analysis/isotope ratio mass spectrometry, gas chromatography/mass spectrometry, gas chromatography/flame ionization detection and gas chromatography/combustion/isotope ratio mass spectrometry. Principal component analysis was applied to examine the inherent structure of the data. RESULTS: The δ13 Cbulk values of maize oils (-18.4 to -14.9 ‰) are typical for C4 plants, and those of olive (-30.2 to -28.2 ‰), sunflower (-30.2 to -29.2 ‰), groundnut (-29.3 ‰), soybean (-30.6 ‰), and rice (-34.5 ‰) oils are typical for C3 plants. The δ2 Hbulk values vary from -161 to -132 ‰ for maize oils and -171 to -109 ‰ for C3 oils. The δ18 Obulk values of all oils vary between 15.2 and 38.9 ‰. The major δ13 CFA differences (>5 ‰) within plant species render the inter-C3 -species comparison difficult. These differences are explained in terms of variations in the lipid biosynthetic pathways and blend of vegetable oils of different FA composition and δ13 CFA values. The samples from the southern hemisphere are generally enriched in 13 C compared with those from the northern hemisphere. Differences between the southern and northern hemispheres were observed in δ2 H (p < 0.001) and δ18 Obulk (p = 0.129) values for all C3 oils, and in δ13 C18:1 (p = 0.026) and δ18 Obulk (p = 0.160) values for maize oils. CONCLUSIONS: The results of this study show that combining bulk and molecular stable isotope ratios, FA compositions and their statistical analysis helps the characterization of the geographic origin of oils. This methodology can be used to detect and source impurities in valuable vegetable oils commercialized worldwide. Copyright © 2016 John Wiley & Sons, Ltd.

12.
Proc Biol Sci ; 280(1773): 20132242, 2013 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-24174111

RESUMO

The interactions between bacteria and fungi, the main actors of the soil microbiome, remain poorly studied. Here, we show that the saprotrophic and ectomycorrhizal soil fungus Morchella crassipes acts as a bacterial farmer of Pseudomonas putida, which serves as a model soil bacterium. Farming by M. crassipes consists of bacterial dispersal, bacterial rearing with fungal exudates, as well as harvesting and translocation of bacterial carbon. The different phases were confirmed experimentally using cell counting and (13)C probing. Common criteria met by other non-human farming systems are also valid for M. crassipes farming, including habitual planting, cultivation and harvesting. Specific traits include delocalization of food production and consumption and separation of roles in the colony (source versus sink areas), which are also found in human agriculture. Our study evidences a hitherto unknown mutualistic association in which bacteria gain through dispersal and rearing, while the fungus gains through the harvesting of an additional carbon source and increased stress resistance of the mycelium. This type of interaction between fungi and bacteria may play a key role in soils.


Assuntos
Ascomicetos/fisiologia , Microbiologia do Solo , Ascomicetos/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Microbiota
13.
Sci Total Environ ; 873: 162410, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842594

RESUMO

Weeds reduce vineyard productivity and affect grape quality by competing with grapevines (Vitis vinifera L.) for water and nutrients. The increased banning of herbicides has prompted the evaluation of alternative soil management strategies. Cover cropping seems to be the best alternative for weed management. However, it may impact vine growth, grape yield, and quality. Quantitative studies on these changes are scarce. Our study aimed to investigate the combined effect of grass cover and water availability on vines of three cultivars, the white Chasselas and Petite Arvine and the red Pinot noir field-grown under identical climatic and pedological conditions and grafted onto the same rootstock. Soil management and irrigation experiments were performed during the 2020-2021 seasons. Two extreme soil management practices were established in the vineyard, based on 100 % bare soil (BS) by the application of herbicides with glufosinate or glyphosate as active ingredients and 100 % grass-covered soil (GS) by cover cropping with a mixture of plant species. Two water statuses were imposed by drip irrigation (DI) and no irrigation (NI). The level of vine-weed competition for water and nitrogen (N) was assessed in the vine, must, and wine solid residues (WSRs) by comparing measurements, i.e., the yeast assimilable N content, C/NWSR, carbon and N isotope ratios (δ13Cgrape-sugars, δ13CWSR, and δ15NWSR) among the different treatments (BS-DI, BS-NI, GS-DI, GS-NI). The increase in the δ13Cgrape-sugars and δ13CWSR values with increasing plant water deficit mimicked the observations in irrigation experiments on BS. The NWSR content and δ15NWSR values decreased with water stress and much more strongly in vines on GS. The dramatic N deficit in rainfed vines on GS could be alleviated with irrigation. The present study provides insights from chemical and stable isotope analyses into the potential impact of cover cropping in vineyards in the context of the banning of herbicides in a time of global water scarcity due to climate change.


Assuntos
Herbicidas , Vitis , Solo/química , Carbono , Nitrogênio , Isótopos , Açúcares
14.
Nat Commun ; 14(1): 6948, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914705

RESUMO

Efficient nutrient recycling underpins the ecological success of cnidarian-algal symbioses in oligotrophic waters. In these symbioses, nitrogen limitation restricts the growth of algal endosymbionts in hospite and stimulates their release of photosynthates to the cnidarian host. However, the mechanisms controlling nitrogen availability and their role in symbiosis regulation remain poorly understood. Here, we studied the metabolic regulation of symbiotic nitrogen cycling in the sea anemone Aiptasia by experimentally altering labile carbon availability in a series of experiments. Combining 13C and 15N stable isotope labeling experiments with physiological analyses and NanoSIMS imaging, we show that the competition for environmental ammonium between the host and its algal symbionts is regulated by labile carbon availability. Light regimes optimal for algal photosynthesis increase carbon availability in the holobiont and stimulate nitrogen assimilation in the host metabolism. Consequently, algal symbiont densities are lowest under optimal environmental conditions and increase toward the lower and upper light tolerance limits of the symbiosis. This metabolic regulation promotes efficient carbon recycling in a stable symbiosis across a wide range of environmental conditions. Yet, the dependence on resource competition may favor parasitic interactions, explaining the instability of the cnidarian-algal symbiosis as environmental conditions in the Anthropocene shift towards its tolerance limits.


Assuntos
Dinoflagellida , Anêmonas-do-Mar , Animais , Carbono/metabolismo , Simbiose , Anêmonas-do-Mar/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Dinoflagellida/metabolismo
15.
Evol Lett ; 7(4): 273-284, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37475747

RESUMO

Periodic food shortage is a common ecological stressor for animals, likely to drive physiological and metabolic adaptations to alleviate its consequences, particularly for juveniles that have no option but to continue to grow and develop despite undernutrition. Here we study changes in metabolism associated with adaptation to nutrient shortage, evolved by replicate Drosophila melanogaster populations maintained on a nutrient-poor larval diet for over 240 generations. In a factorial metabolomics experiment we showed that both phenotypic plasticity and genetically-based adaptation to the poor diet involved wide-ranging changes in metabolite abundance; however, the plastic response did not predict the evolutionary change. Compared to nonadapted larvae exposed to the poor diet for the first time, the adapted larvae showed lower levels of multiple free amino acids in their tissues-and yet they grew faster. By quantifying accumulation of the nitrogen stable isotope 15N we show that adaptation to the poor diet led to an increased use of amino acids for energy generation. This apparent "waste" of scarce amino acids likely results from the trade-off between acquisition of dietary amino acids and carbohydrates observed in these populations. The three branched-chain amino acids (leucine, isoleucine, and valine) showed a unique pattern of depletion in adapted larvae raised on the poor diet. A diet supplementation experiment demonstrated that these amino acids are limiting for growth on the poor diet, suggesting that their low levels resulted from their expeditious use for protein synthesis. These results demonstrate that selection driven by nutrient shortage not only promotes improved acquisition of limiting nutrients, but also has wide-ranging effects on how the nutrients are used. They also show that the abundance of free amino acids in the tissues does not, in general, reflect the nutritional condition and growth potential of an animal.

16.
Rapid Commun Mass Spectrom ; 26(22): 2627-36, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23059879

RESUMO

RATIONALE: The choice of containers for storage of aqueous samples between their collection, transport and water hydrogen ((2)H) and oxygen ((18)O) stable isotope analysis is a topic of concern for a wide range of fields in environmental, geological, biomedical, food, and forensic sciences. The transport and separation of water molecules during water vapor or liquid uptake by sorption or solution and the diffusive transport of water molecules through organic polymer material by permeation or pervaporation may entail an isotopic fractionation. An experiment was conducted to evaluate the extent of such fractionation. METHODS: Sixteen bottle-like containers of eleven different organic polymers, including low and high density polyethylene (LDPE and HDPE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), and perfluoroalkoxy-Teflon (PFA), of different wall thickness and size were completely filled with the same mineral water and stored for 659 days under the same conditions of temperature and humidity. Particular care was exercised to keep the bottles tightly closed and prevent loss of water vapor through the seals. RESULTS: Changes of up to +5‰ for δ(2)H values and +2.0‰ for δ(18)O values were measured for water after more than 1 year of storage within a plastic container, with the magnitude of change depending mainly on the type of organic polymer, wall thickness, and container size. The most important variations were measured for the PET and PC bottles. Waters stored in glass bottles with Polyseal™ cone-lined PP screw caps and thick-walled HDPE or PFA containers with linerless screw caps having an integrally molded inner sealing ring preserved their original δ(2)H and δ(18)O values. The carbon, hydrogen, and oxygen stable isotope compositions of the organic polymeric materials were also determined. CONCLUSIONS: The results of this study clearly show that for precise and accurate measurements of the water stable isotope composition in aqueous solutions, rigorous sampling and storage procedures are needed both for laboratory standards and for unknown samples.


Assuntos
Deutério/análise , Reagentes de Laboratório/normas , Isótopos de Oxigênio/análise , Plásticos/química , Água/química , Umidade , Reagentes de Laboratório/química , Águas Minerais , Embalagem de Produtos , Temperatura
17.
Sci Rep ; 12(1): 4342, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288615

RESUMO

Large-scale release of isotopically light carbon is responsible for the carbon isotope excursion (CIE) of the Toarcian Oceanic Anoxic Event during the Lower Jurassic. Proposed sources include methane hydrate dissociation, volcanogenic outgassing of carbon dioxide and/or thermogenic methane release from the Karoo-Ferrar magmatic province (southern Africa). Distinct small-scale shifts superimposed on the long-term CIE have been interpreted as rapid methane pulses linked to astronomically forced climate changes. In the Peniche reference section (Portugal), these small-scale shifts correspond to distinct brownish marly layers featuring markedly high mercury (Hg) and magnetic mineral concentration. Total organic carbon and Hg increase are uncorrelated, which suggests input of Hg into the atmosphere, possibly released after the intrusion of the Karoo-Ferrar sills into organic-rich sediments. Enhanced magnetic properties are associated with the presence of martite, washed-in oxidized magnetite, inferred to be due to increased aridity on the continental hinterland. This study provides strong evidence for a direct link between the Karoo-Ferrar magmatism, the carbon-isotope shifts and the resulting environmental changes.


Assuntos
Sedimentos Geológicos , Mercúrio , Atmosfera , Isótopos de Carbono/análise , Metano , Oceanos e Mares
18.
Environ Sci Technol ; 45(11): 4876-83, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21563818

RESUMO

We present the study of the geochemical processes associated with the first successful remediation of a marine shore tailings deposit in a coastal desert environment (Bahía de Ite, in the Atacama Desert of Peru). The remediation approach implemented a wetland on top of the oxidized tailings. The site is characterized by a high hydraulic gradient produced by agricultural irrigation on upstream gravel terraces that pushed river water (∼500 mg/L SO(4)) toward the sea and through the tailings deposit. The geochemical and isotopic (δ(2)H(water) and δ(18)O(water), δ(34)S(sulfate), δ(18)O(sulfate)) approach applied here revealed that evaporite horizons (anhydrite and halite) in the gravel terraces are the source of increased concentrations of SO(4), Cl, and Na up to ∼1500 mg/L in the springs at the base of the gravel terraces. Deeper groundwater interacting with underlying marine sequences increased the concentrations of SO(4), Cl, and Na up to 6000 mg/L and increased the alkalinity up to 923 mg/L CaCO(3) eq. in the coastal aquifer. These waters infiltrated into the tailings deposit at the shelf-tailings interface. Nonremediated tailings had a low-pH oxidation zone (pH 1-4) with significant accumulations of efflorescent salts (10-20 cm thick) at the surface because of upward capillary transport of metal cations in the arid climate. Remediated tailings were characterized by neutral pH and reducing conditions (pH ∼7, Eh ∼100 mV). As a result, most bivalent metals such as Cu, Zn, and Ni had very low concentrations (around 0.01 mg/L or below detection limit) because of reduction and sorption processes. In contrast, these reducing conditions increased the mobility of iron from two sources in this system: (1) The originally Fe(III)-rich oxidation zone, where Fe(III) was reduced during the remediation process and formed an Fe(II) plume, and (2) reductive dissolution of Fe(III) oxides present in the original shelf lithology formed an Fe-Mn plume at 10-m depth. These two Fe-rich plumes were pushed toward the shoreline where more oxidizing and higher pH conditions triggered the precipitation of Fe(III)hydroxide coatings on silicates. These coatings acted as a filter for the arsenic, which naturally infiltrated with the river water (∼500 µg/L As natural background) into the tailings deposit.


Assuntos
Recuperação e Remediação Ambiental , Resíduos Industriais , Ciclo Hidrológico , Poluentes Químicos da Água/química , Poluição da Água , Arsênio/análise , Clima Desértico , Ferro/análise , Mineração , Peru , Áreas Alagadas
19.
Plant Physiol Biochem ; 163: 45-54, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33812226

RESUMO

We investigated the within- and between-leaf variability in the carbon and nitrogen isotope composition (δ13C and δ15N) and total nitrogen (TN) content in two grapevine cultivars (Vitis vinifera cv. Chasselas and Pinot noir) field-grown under rain-fed conditions. The within-leaf variability was studied in discs sampled from base-to-tip and left and right regions from the margin to midrib. The intra- and interplant variability was studied by comparing leaves at different positions along the shoot (basal, median, apical). In leaves from both cultivars, a decrease in δ13C from base to tip was observed, which is in line with an upward gradient of stomatal density and chlorophyll concentration. Less important, but still significant differences were observed between the right and left discs. The leaf TN and δ15N values differed between cultivars, showed smaller variations than the δ13C values, and no systematic spatial trends. The intraleaf variations in δ13C, δ15N, and TN suggest that stomatal behavior, CO2 fixation, chlorophyll concentrations, and the chemical composition of leaf components were heterogeneous in the leaves. At the canopy scale, the apical leaves had less 13C and more 15N and TN than the basal leaves, indicating differences in their photosynthetic capacity and remobilizations from old, senescing leaves to younger leaves. Overall, this study demonstrates patchiness in the δ13C and δ15N values of grapevine leaves and species-specificity of the nitrogen assimilation and 15N fractionation. These findings suggest that care must be taken not to overinterpret foliar δ13C and δ15N values in studies based on fragmented material as markers of physiological and biochemical responses to environmental factors.


Assuntos
Carbono , Nitrogênio , Isótopos de Carbono , Isótopos de Nitrogênio , Folhas de Planta
20.
Biogeochemistry ; 153(3): 223-241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776566

RESUMO

Geochemical indicators are emerging as important predictors of soil organic carbon (SOC) dynamics, but evidence concerning the role of calcium (Ca) is scarce. This study investigates the role of Ca prevalence in SOC accumulation by comparing otherwise similar sites with (CaCO3-bearing) or without carbonates (CaCO3-free). We measured the SOC content and indicators of organic matter quality (C stable isotope composition, expressed as δ 13C values, and thermal stability) in bulk soil samples. We then used sequential sonication and density fractionation (DF) to separate two occluded pools from free and mineral-associated SOC. The SOC content, mass, and δ 13C values were determined in all the fractions. X-ray photoelectron spectroscopy was used to investigate the surface chemistry of selected fractions. Our hypothesis was that occlusion would be more prevalent at the CaCO3-bearing site due to the influence of Ca on aggregation, inhibiting oxidative transformation, and preserving lower δ 13C values. Bulk SOC content was twice as high in the CaCO3-bearing profiles, which also had lower bulk δ 13C values, and more occluded SOC. Yet, contrary to our hypothesis, occlusion only accounted for a small proportion of total SOC (< 10%). Instead, it was the heavy fraction (HF), containing mineral-associated organic C, which accounted for the majority of total SOC and for the lower bulk δ 13C values. Overall, an increased Ca prevalence was associated with a near-doubling of mineral-associated SOC content. Future investigations should now aim to isolate Ca-mediated complexation processes that increase organo-mineral association and preserve organic matter with lower δ 13C values. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s10533-021-00779-7) contains supplementary material, which is available to authorized users.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA