RESUMO
Cultivated oat (Avena sativa L.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia1,2. Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products. However, the lack of a fully annotated reference genome has hampered efforts to deconvolute its complex evolutionary history and functional gene dynamics. Here we present a high-quality reference genome of A. sativa and close relatives of its diploid (Avena longiglumis, AA, 2n = 14) and tetraploid (Avena insularis, CCDD, 2n = 4x = 28) progenitors. We reveal the mosaic structure of the oat genome, trace large-scale genomic reorganizations in the polyploidization history of oat and illustrate a breeding barrier associated with the genome architecture of oat. We showcase detailed analyses of gene families implicated in human health and nutrition, which adds to the evidence supporting oat safety in gluten-free diets, and we perform mapping-by-sequencing of an agronomic trait related to water-use efficiency. This resource for the Avena genus will help to leverage knowledge from other cereal genomes, improve understanding of basic oat biology and accelerate genomics-assisted breeding and reanalysis of quantitative trait studies.
Assuntos
Avena , Grão Comestível , Genoma de Planta , Avena/genética , Diploide , Grão Comestível/genética , Genoma de Planta/genética , Mosaicismo , Melhoramento Vegetal , TetraploidiaRESUMO
Genetic diversity is key to crop improvement. Owing to pervasive genomic structural variation, a single reference genome assembly cannot capture the full complement of sequence diversity of a crop species (known as the 'pan-genome'1). Multiple high-quality sequence assemblies are an indispensable component of a pan-genome infrastructure. Barley (Hordeum vulgare L.) is an important cereal crop with a long history of cultivation that is adapted to a wide range of agro-climatic conditions2. Here we report the construction of chromosome-scale sequence assemblies for the genotypes of 20 varieties of barley-comprising landraces, cultivars and a wild barley-that were selected as representatives of global barley diversity. We catalogued genomic presence/absence variants and explored the use of structural variants for quantitative genetic analysis through whole-genome shotgun sequencing of 300 gene bank accessions. We discovered abundant large inversion polymorphisms and analysed in detail two inversions that are frequently found in current elite barley germplasm; one is probably the product of mutation breeding and the other is tightly linked to a locus that is involved in the expansion of geographical range. This first-generation barley pan-genome makes previously hidden genetic variation accessible to genetic studies and breeding.
Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Hordeum/genética , Internacionalidade , Mutação , Melhoramento Vegetal , Inversão Cromossômica/genética , Mapeamento Cromossômico , Loci Gênicos/genética , Genótipo , Hordeum/classificação , Polimorfismo Genético/genética , Padrões de Referência , Banco de Sementes , Inversão de Sequência , Sequenciamento Completo do GenomaRESUMO
Wind, rain, herbivores, obstacles, neighbouring plants, etc. provide important mechanical cues to steer plant growth and survival. Mechanostimulation to stimulate yield and stress resistance of crops is of significant research interest, yet a molecular understanding of transcriptional responses to touch is largely absent in cereals. To address this, we performed whole-genome transcriptomics following mechanostimulation of wheat, barley, and the recent genome-sequenced oat. The largest transcriptome changes occurred ±25 min after touching, with most of the genes being upregulated. While most genes returned to basal expression level by 1-2 h in oat, many genes retained high expression even 4 h post-treatment in barley and wheat. Functional categories such as transcription factors, kinases, phytohormones, and Ca2+ regulation were affected. In addition, cell wall-related genes involved in (hemi)cellulose, lignin, suberin, and callose biosynthesis were touch-responsive, providing molecular insight into mechanically induced changes in cell wall composition. Furthermore, several cereal-specific transcriptomic footprints were identified that were not observed in Arabidopsis. In oat and barley, we found evidence for systemic spreading of touch-induced signalling. Finally, we provide evidence that both the jasmonic acid-dependent and the jasmonic acid-independent pathways underlie touch-signalling in cereals, providing a detailed framework and marker genes for further study of (a)biotic stress responses in cereals.
Assuntos
Arabidopsis , Hordeum , Tato , Grão Comestível/genética , Arabidopsis/genética , Hordeum/genética , Triticum/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas/genéticaRESUMO
Sequence assembly of large and repeat-rich plant genomes has been challenging, requiring substantial computational resources and often several complementary sequence assembly and genome mapping approaches. The recent development of fast and accurate long-read sequencing by circular consensus sequencing (CCS) on the PacBio platform may greatly increase the scope of plant pan-genome projects. Here, we compare current long-read sequencing platforms regarding their ability to rapidly generate contiguous sequence assemblies in pan-genome studies of barley (Hordeum vulgare). Most long-read assemblies are clearly superior to the current barley reference sequence based on short-reads. Assemblies derived from accurate long reads excel in most metrics, but the CCS approach was the most cost-effective strategy for assembling tens of barley genomes. A downsampling analysis indicated that 20-fold CCS coverage can yield very good sequence assemblies, while even five-fold CCS data may capture the complete sequence of most genes. We present an updated reference genome assembly for barley with near-complete representation of the repeat-rich intergenic space. Long-read assembly can underpin the construction of accurate and complete sequences of multiple genomes of a species to build pan-genome infrastructures in Triticeae crops and their wild relatives.
Assuntos
Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hordeum/genética , Biologia Computacional/métodos , DNA Intergênico , Genoma de Planta , Anotação de Sequência Molecular , Retroelementos , Análise de Sequência de DNA , Sequências Repetidas TerminaisRESUMO
Aegilops is a close relative of wheat (Triticum spp.), and Aegilops species in the section Sitopsis represent a rich reservoir of genetic diversity for the improvement of wheat. To understand their diversity and advance their utilization, we produced whole-genome assemblies of Aegilops longissima and Aegilops speltoides. Whole-genome comparative analysis, along with the recently sequenced Aegilops sharonensis genome, showed that the Ae. longissima and Ae. sharonensis genomes are highly similar and are most closely related to the wheat D subgenome. By contrast, the Ae. speltoides genome is more closely related to the B subgenome. Haplotype block analysis supported the idea that Ae. speltoides genome is closest to the wheat B subgenome, and highlighted variable and similar genomic regions between the three Aegilops species and wheat. Genome-wide analysis of nucleotide-binding leucine-rich repeat (NLR) genes revealed species-specific and lineage-specific NLR genes and variants, demonstrating the potential of Aegilops genomes for wheat improvement.
Assuntos
Aegilops , Aegilops/genética , Genoma de Planta/genética , Filogenia , Poaceae/genética , Triticum/genéticaRESUMO
Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat (Triticum aestivum, genomes AABBDD) and an important genetic resource for wheat. The large size and highly repetitive nature of the Ae. tauschii genome has until now precluded the development of a reference-quality genome sequence. Here we use an array of advanced technologies, including ordered-clone genome sequencing, whole-genome shotgun sequencing, and BioNano optical genome mapping, to generate a reference-quality genome sequence for Ae. tauschii ssp. strangulata accession AL8/78, which is closely related to the wheat D genome. We show that compared to other sequenced plant genomes, including a much larger conifer genome, the Ae. tauschii genome contains unprecedented amounts of very similar repeated sequences. Our genome comparisons reveal that the Ae. tauschii genome has a greater number of dispersed duplicated genes than other sequenced genomes and its chromosomes have been structurally evolving an order of magnitude faster than those of other grass genomes. The decay of colinearity with other grass genomes correlates with recombination rates along chromosomes. We propose that the vast amounts of very similar repeated sequences cause frequent errors in recombination and lead to gene duplications and structural chromosome changes that drive fast genome evolution.
Assuntos
Genoma de Planta , Filogenia , Poaceae/genética , Triticum/genética , Mapeamento Cromossômico , Diploide , Evolução Molecular , Duplicação Gênica , Genes de Plantas/genética , Genômica/normas , Poaceae/classificação , Recombinação Genética/genética , Análise de Sequência de DNA/normas , Triticum/classificaçãoRESUMO
Throughout the temperate zones, plants face combined drought and heat spells in increasing frequency and intensity. Here, we compared periodic (intermittent, i.e., high-frequency) versus chronic (continuous, i.e., high-intensity) drought-heat stress scenarios in gray poplar (Populus× canescens) plants for phenotypic and transcriptomic effects during stress and after recovery. Photosynthetic productivity after stress recovery exceeded the performance of poplar trees without stress experience. We analyzed the molecular basis of this stress-related memory phenotype and investigated gene expression responses across five major tree compartments including organs and wood tissues. For each of these tissue samples, transcriptomic changes induced by the two stress scenarios were highly similar during the stress phase but strikingly divergent after recovery. Characteristic molecular response patterns were found across tissues but involved different genes in each tissue. Only a small fraction of genes showed similar stress and recovery expression profiles across all tissues, including type 2C protein phosphatases, the LATE EMBRYOGENESIS ABUNDANT PROTEIN4-5 genes, and homologs of the Arabidopsis (Arabidopsis thaliana) transcription factor HOMEOBOX7. Analysis of the predicted transcription factor regulatory networks for these genes suggested that a complex interplay of common and tissue-specific components contributes to the coordination of post-recovery responses to stress in woody plants.
Assuntos
Proteínas de Plantas/metabolismo , Populus/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Populus/genética , Estresse FisiológicoRESUMO
Bread wheat is a major crop that has long been the focus of basic and breeding research. Assembly of its genome has been difficult because of its large size and allohexaploid nature (AABBDD genome). Following the first reported assembly of the genome of the experimental strain Chinese Spring (CS), the 10+ Wheat Genomes Project was launched to produce multiple assemblies of worldwide modern cultivars. The only Asian cultivar in the project is Norin 61, a representative Japanese cultivar adapted to grow across a broad latitudinal range, mostly characterized by a wet climate and a short growing season. Here, we characterize the key aspects of its chromosome-scale genome assembly spanning 15 Gb with a raw scaffold N50 of 22 Mb. Analysis of the repetitive elements identified chromosomal regions unique to Norin 61 that encompass a tandem array of the pathogenesis-related 13 family. We report novel copy-number variations in the B homeolog of the florigen gene FT1/VRN3, pseudogenization of its D homeolog and the association of its A homeologous alleles with the spring/winter growth habit. Furthermore, the Norin 61 genome carries typical East Asian functional variants different from CS, ranging from a single nucleotide to multi-Mb scale. Examples of such variation are the Fhb1 locus, which confers Fusarium head-blight resistance, Ppd-D1a, which confers early flowering, Glu-D1f for Asian noodle quality and Rht-D1b, which introduced semi-dwarfism during the green revolution. The adoption of Norin 61 as a reference assembly for functional and evolutionary studies will enable comprehensive characterization of the underexploited Asian bread wheat diversity.
Assuntos
Resistência à Doença/genética , Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Genoma de Planta/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Citogenética , Ásia Oriental , Flores/genética , Fusarium , Genes de Plantas/fisiologia , Estudos de Associação Genética , Variação Genética/genética , Variação Genética/fisiologia , Genoma de Planta/fisiologia , Genótipo , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Triticum/crescimento & desenvolvimento , Triticum/imunologia , Triticum/fisiologiaRESUMO
Wheat has been domesticated into a large number of agricultural environments and has the ability to adapt to diverse environments. To understand this process, we survey genotype, repeat content, and DNA methylation across a bread wheat landrace collection representing global genetic diversity. We identify independent variation in methylation, genotype, and transposon copy number. We show that these, so far unexploited, sources of variation have had a significant impact on the wheat genome and that ancestral methylation states become preferentially "hard coded" as single nucleotide polymorphisms (SNPs) via 5-methylcytosine deamination. These mechanisms also drive local adaption, impacting important traits such as heading date and salt tolerance. Methylation and transposon diversity could therefore be used alongside SNP-based markers for breeding.
Assuntos
Adaptação Fisiológica/genética , Variação Genética , Poliploidia , Triticum/genética , Metilação de DNA , Elementos de DNA Transponíveis/genéticaRESUMO
KEY MESSAGE: The first cytological characterization of the 2NvS segment in hexaploid wheat; complete de novo assembly and annotation of 2NvS segment; 2NvS frequency is increasing 2NvS and is associated with higher yield. The Aegilops ventricosa 2NvS translocation segment has been utilized in breeding disease-resistant wheat crops since the early 1990s. This segment is known to possess several important resistance genes against multiple wheat diseases including root knot nematode, stripe rust, leaf rust and stem rust. More recently, this segment has been associated with resistance to wheat blast, an emerging and devastating wheat disease in South America and Asia. To date, full characterization of the segment including its size, gene content and its association with grain yield is lacking. Here, we present a complete cytological and physical characterization of this agronomically important translocation in bread wheat. We de novo assembled the 2NvS segment in two wheat varieties, 'Jagger' and 'CDC Stanley,' and delineated the segment to be approximately 33 Mb. A total of 535 high-confidence genes were annotated within the 2NvS region, with > 10% belonging to the nucleotide-binding leucine-rich repeat (NLR) gene families. Identification of groups of NLR genes that are potentially N genome-specific and expressed in specific tissues can fast-track testing of candidate genes playing roles in various disease resistances. We also show the increasing frequency of 2NvS among spring and winter wheat breeding programs over two and a half decades, and the positive impact of 2NvS on wheat grain yield based on historical datasets. The significance of the 2NvS segment in wheat breeding due to resistance to multiple diseases and a positive impact on yield highlights the importance of understanding and characterizing the wheat pan-genome for better insights into molecular breeding for wheat improvement.
Assuntos
Aegilops/crescimento & desenvolvimento , Basidiomycota/fisiologia , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/crescimento & desenvolvimento , Aegilops/genética , Aegilops/microbiologia , Pão , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Marcadores Genéticos , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Triticum/genética , Triticum/microbiologiaRESUMO
Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements. Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop.
Assuntos
Mapeamento de Sequências Contíguas/métodos , Genoma de Planta , Anotação de Sequência Molecular/métodos , Proteínas de Plantas/genética , Translocação Genética , Triticum/genética , Algoritmos , Mapeamento de Sequências Contíguas/normas , Anotação de Sequência Molecular/normas , Polimorfismo Genético , PoliploidiaRESUMO
Pseudogenes have a reputation of being 'evolutionary relics' or 'junk DNA'. While they are well characterized in mammals, studies in more complex plant genomes have so far been hampered by the absence of reference genome sequences. Barley is one of the economically most important cereals and has a genome size of 5.1 Gb. With the first high-quality genome reference assembly available for a Triticeae crop, we conducted a whole-genome assessment of pseudogenes on the barley genome. We identified, characterized and classified 89 440 gene fragments and pseudogenes scattered along the chromosomes, with occasional hotspots and higher densities at the chromosome ends. Full-length pseudogenes (11 015) have preferentially retained their exon-intron structure. Retrotransposition of processed mRNAs only plays a marginal role in their creation. However, the distribution of retroposed pseudogenes reflects the Rabl configuration of barley chromosomes and thus hints at founding mechanisms. While parent genes related to the defense-response were found to be under-represented in cultivated barley, we detected several defense-related pseudogenes in wild barley accessions. The percentage of transcriptionally active pseudogenes is 7.2%, and these may potentially adopt new regulatory roles.The barley genome is rich in pseudogenes and small gene fragments mainly located towards chromosome tips or as tandemly repeated units. Our results indicate non-random duplication and pseudogenization preferences and improve our understanding of the dynamics of gene birth and death in large plant genomes and the mechanisms that lead to evolutionary innovations.
Assuntos
Genes de Plantas , Hordeum/genética , Pseudogenes , Mapeamento Cromossômico , Cromossomos de Plantas , Duplicação Gênica , Família Multigênica , Seleção Genética , SinteniaRESUMO
About 8,000 years ago in the Fertile Crescent, a spontaneous hybridization of the wild diploid grass Aegilops tauschii (2n = 14; DD) with the cultivated tetraploid wheat Triticum turgidum (2n = 4x = 28; AABB) resulted in hexaploid wheat (T. aestivum; 2n = 6x = 42; AABBDD). Wheat has since become a primary staple crop worldwide as a result of its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker's flour. Here we describe sequencing the Ae. tauschii genome and obtaining a roughly 90-fold depth of short reads from libraries with various insert sizes, to gain a better understanding of this genetically complex plant. The assembled scaffolds represented 83.4% of the genome, of which 65.9% comprised transposable elements. We generated comprehensive RNA-Seq data and used it to identify 43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely anchored to chromosomes with an integrated high-density genetic map. Whole-genome analysis revealed gene family expansion in Ae. tauschii of agronomically relevant gene families that were associated with disease resistance, abiotic stress tolerance and grain quality. This draft genome sequence provides insight into the environmental adaptation of bread wheat and can aid in defining the large and complicated genomes of wheat species.
Assuntos
Adaptação Fisiológica/genética , Genoma de Planta/genética , Poaceae/genética , Triticum/genética , Brachypodium/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis/genética , Resistência à Doença/genética , Genes de Plantas/genética , Hordeum/genética , Dados de Sequência Molecular , Doenças das Plantas , Poliploidia , Análise de Sequência de RNA , Fatores de Transcrição/genética , Triticum/fisiologiaRESUMO
Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis. Here we report the sequencing of its large, 17-gigabase-pair, hexaploid genome using 454 pyrosequencing, and comparison of this with the sequences of diploid ancestral and progenitor genomes. We identified between 94,000 and 96,000 genes, and assigned two-thirds to the three component genomes (A, B and D) of hexaploid wheat. High-resolution synteny maps identified many small disruptions to conserved gene order. We show that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a resource for accelerating gene discovery and improving this major crop.
Assuntos
Pão , Genoma de Planta/genética , Triticum/genética , Brachypodium/genética , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , DNA Complementar/genética , DNA de Plantas/genética , Evolução Molecular , Genes de Plantas/genética , Genômica , Família Multigênica/genética , Oryza/genética , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Pseudogenes/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Triticum/classificação , Zea mays/genéticaRESUMO
PGSB (Plant Genome and Systems Biology: formerly MIPS) PlantsDB (http://pgsb.helmholtz-muenchen.de/plant/index.jsp) is a database framework for the comparative analysis and visualization of plant genome data. The resource has been updated with new data sets and types as well as specialized tools and interfaces to address user demands for intuitive access to complex plant genome data. In its latest incarnation, we have re-worked both the layout and navigation structure and implemented new keyword search options and a new BLAST sequence search functionality. Actively involved in corresponding sequencing consortia, PlantsDB has dedicated special efforts to the integration and visualization of complex triticeae genome data, especially for barley, wheat and rye. We enhanced CrowsNest, a tool to visualize syntenic relationships between genomes, with data from the wheat sub-genome progenitor Aegilops tauschii and added functionality to the PGSB RNASeqExpressionBrowser. GenomeZipper results were integrated for the genomes of barley, rye, wheat and perennial ryegrass and interactive access is granted through PlantsDB interfaces. Data exchange and cross-linking between PlantsDB and other plant genome databases is stimulated by the transPLANT project (http://transplantdb.eu/).
Assuntos
Bases de Dados Genéticas , Genoma de Planta , Expressão Gênica , Genômica , Hordeum/genética , Plantas/genética , Plantas/metabolismo , Secale/genética , Software , Triticum/genéticaRESUMO
Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing â¼94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.
Assuntos
Evolução Biológica , Genoma de Planta , Medicago truncatula/genética , Medicago truncatula/microbiologia , Rhizobium/fisiologia , Simbiose , Dados de Sequência Molecular , Fixação de Nitrogênio/genética , Glycine max/genética , Sintenia , Vitis/genéticaRESUMO
BACKGROUND: The Lolium-Festuca complex incorporates species from the Lolium genera and the broad leaf fescues, both belonging to the subfamily Pooideae. This subfamily also includes wheat, barley, oat and rye, making it extremely important to world agriculture. Species within the Lolium-Festuca complex show very diverse phenotypes, and many of them are related to agronomically important traits. Analysis of sequenced transcriptomes of these non-model species may shed light on the molecular mechanisms underlying this phenotypic diversity. RESULTS: We have generated de novo transcriptome assemblies for four species from the Lolium-Festuca complex, ranging from 52,166 to 72,133 transcripts per assembly. We have also predicted a set of proteins and validated it with a high-confidence protein database from three closely related species (H. vulgare, B. distachyon and O. sativa). We have obtained gene family clusters for the four species using OrthoMCL and analyzed their inferred phylogenetic relationships. Our results indicate that VRN2 is a candidate gene for differentiating vernalization and non-vernalization types in the Lolium-Festuca complex. Grouping of the gene families based on their BLAST identity enabled us to divide ortholog groups into those that are very conserved and those that are more evolutionarily relaxed. The ratio of the non-synonumous to synonymous substitutions enabled us to pinpoint protein sequences evolving in response to positive selection. These proteins may explain some of the differences between the more stress tolerant Festuca, and the less stress tolerant Lolium species. CONCLUSIONS: Our data presents a comprehensive transcriptome sequence comparison between species from the Lolium-Festuca complex, with the identification of potential candidate genes underlying some important phenotypical differences within the complex (such as VRN2). The orthologous genes between the species have a very high %id (91,61%) and the majority of gene families were shared for all of them. It is likely that the knowledge of the genomes will be largely transferable between species within the complex.
Assuntos
Festuca/genética , Lolium/genética , Homologia de Sequência , Transcriptoma , Biologia Computacional , Festuca/metabolismo , Lolium/metabolismo , Família Multigênica , Filogenia , Seleção Genética , Análise de Sequência de RNA , Estresse FisiológicoRESUMO
Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approximately 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approximately 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.
Assuntos
Evolução Molecular , Genoma de Planta/genética , Poaceae/genética , Sorghum/genética , Arabidopsis/genética , Cromossomos de Plantas/genética , Duplicação Gênica , Genes de Plantas , Oryza/genética , Populus/genética , Recombinação Genética/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência/genética , Zea mays/genéticaRESUMO
The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB-plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834-D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB.
Assuntos
Bases de Dados Genéticas , Genoma de Planta , Produtos Agrícolas/genética , Internet , Sequências Repetitivas Dispersas , Família Multigênica , Poaceae/genética , SoftwareRESUMO
BACKGROUND: The date palm is one of the oldest cultivated fruit trees. It is critical in many ways to cultures in arid lands by providing highly nutritious fruit while surviving extreme heat and environmental conditions. Despite its importance from antiquity, few genetic resources are available for improving the productivity and development of the dioecious date palm. To date there has been no genetic map and no sex chromosome has been identified. RESULTS: Here we present the first genetic map for date palm and identify the putative date palm sex chromosome. We placed ~4000 markers on the map using nearly 1200 framework markers spanning a total of 1293 cM. We have integrated the genetic map, derived from the Khalas cultivar, with the draft genome and placed up to 19% of the draft genome sequence scaffolds onto linkage groups for the first time. This analysis revealed approximately ~1.9 cM/Mb on the map. Comparison of the date palm linkage groups revealed significant long-range synteny to oil palm. Analysis of the date palm sex-determination region suggests it is telomeric on linkage group 12 and recombination is not suppressed in the full chromosome. CONCLUSIONS: Based on a modified genotyping-by-sequencing approach we have overcome challenges due to lack of genetic resources and provide the first genetic map for date palm. Combined with the recent draft genome sequence of the same cultivar, this resource offers a critical new tool for date palm biotechnology, palm comparative genomics and a better understanding of sex chromosome development in the palms.