Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 30(6): e02135, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32304117

RESUMO

In two Costa Rican and three Honduran sites that vary in rainfall and soil properties, we used natural isotopes, a soil water balance model, and broad-scale climate-based drought indices to study shifts in water use with ontogeny from seedlings to mature tropical live oak (Quercus oleoides) trees. Water use patterns help to explain persistence of this broadly distributed species in Mesoamerica and to evaluate likely threats of ongoing climate changes. At the end of the dry season, soil δ18 O profiles can be described by one-phase exponential decay curves. Minimum values reflect geographic origins of the last significant rain event, and curvature is inversely related to canopy closure, demonstrating its role in controlling topsoil evaporation. Partitioning of soil water sources for transpiration was analyzed with a mixing model. In the Costa Rican sites, in a relatively dry year, saplings and mature trees took up water from the upper soil. In a relatively wet year in the Honduran sites, we observed deeper water extraction. In all sites, soil storage dampens extreme variation in water availability. The size dependence of water uptake with larger stems exploiting deeper layers is translated into variation in bulk leaf δ13 C-based water use efficiency (WUE) with the exception of mature trees. From 1932 to 2015, drought severity was evaluated with the Standardized Precipitation Evapotranspiration Index (SPEI) concurrently with simulations of the soil water balance model. Drought occurrence increased, regardless of the time period, averaged across 6, 12, or 24 months. All ontogenetic stages in all populations experienced frequent water limitation. We found evidence for linear trends toward aridification with increases of return periods of drought for October SPEI-24 declining from 42 to 6 yr in Costa Rica and from 21 to 7 yr in Honduras and recent occurrence of multiyear droughts from 2013 to 2016. October SPEI-12 and SPEI-24 were significantly related to the Oceanic Niño Indices demonstrating that local inter-annual variations in drought severity in Mesoamerica are modulated by large-scale climate forces. Drought severity in the near-term future depends on the extent to which the Pacific will adopt a more La Niña-like vs. a more El Niño-like state under ongoing climatic changes.


Assuntos
Quercus , Costa Rica , Secas , Chuva , Estações do Ano , Árvores , Água
2.
Mol Ecol ; 27(9): 2176-2192, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29577469

RESUMO

The impacts of drought are expanding worldwide as a consequence of climate change. However, there is still little knowledge of how species respond to long-term selection in seasonally dry ecosystems. In this study, we used QST -FST comparisons to investigate (i) the role of natural selection on population genetic differentiation for a set of functional traits related to drought resistance in the seasonally dry tropical oak Quercus oleoides and (ii) the influence of water availability at the site of population origin and in experimental treatments on patterns of trait divergence. We conducted a thorough phenotypic characterization of 1912 seedlings from ten populations growing in field and greenhouse common gardens under replicated watering treatments. We also genotyped 218 individuals from the same set of populations using eleven nuclear microsatellites. QST distributions for leaf lamina area, specific leaf area, leaf thickness and stomatal pore index were higher than FST distribution. Results were consistent across growth environments. Genetic differentiation among populations for these functional traits was associated with the index of moisture at the origin of the populations. Together, our results suggest that drought is an important selective agent for Q. oleoides and that differences in length and severity of the dry season have driven the evolution of genetic differences in functional traits.


Assuntos
Deriva Genética , Quercus/genética , Água/metabolismo , Mudança Climática , Secas , Estudos de Associação Genética , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Quercus/anatomia & histologia , Quercus/metabolismo , Estações do Ano , Plântula/anatomia & histologia , Plântula/genética , Plântula/metabolismo , Seleção Genética
3.
Oecologia ; 162(2): 491-504, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19784850

RESUMO

Ecosystem water-use efficiency (eWUE; the ratio of net ecosystem productivity to evapotranspiration rate) is a complex landscape-scale parameter controlled by both physical and biological processes occurring in soil and plants. Leaf WUE (lWUE; the ratio of leaf CO(2) assimilation rate to transpiration rate) is controlled at short time scales principally by leaf stomatal dynamics and this control varies among plant species. Little is known about how leaf-scale variation in lWUE influences landscape-scale variation in eWUE. We analyzed approximately seven thousand 30-min averaged eddy covariance observations distributed across 9 years in order to assess eWUE in two neighboring forest communities. Mean eWUE was 19% lower for the community in which Engelmann spruce and subalpine fir were dominant, compared to the community in which lodgepole pine was dominant. Of that 19% difference, 8% was attributed to residual bias in the analysis that favored periods with slightly drier winds for the spruce-fir community. In an effort to explain the remaining 11% difference, we assessed patterns in lWUE using C isotope ratios. When we focused on bulk tissue from older needles we detected significant differences in lWUE among tree species and between upper and lower canopy needles. However, when these differences were scaled to reflect vertical and horizontal leaf area distributions within the two communities, they provided no power to explain differences in eWUE that we observed in the eddy covariance data. When we focused only on bulk needle tissue of current-year needles for 3 of the 9 years, we also observed differences in lWUE among species and in needles from upper and lower parts of the canopy. When these differences in lWUE were scaled to reflect leaf area distributions within the two communities, we were able to explain 6.3% of the differences in eWUE in 1 year (2006), but there was no power to explain differences in the other 2 years (2003 and 2007). When we examined sugars extracted from needles at 3 different times during the growing season of 2007, we could explain 3.8-6.0% of the differences in eWUE between the two communities, but the difference in eWUE obtained from the eddy covariance record, and averaged over the growing season for this single year, was 32%. Thus, overall, after accounting for species effects on lWUE, we could explain little of the difference in eWUE between the two forest communities observed in the eddy covariance record. It is likely that water and C fluxes from soil, understory plants, and non-needle tissues, account for most of the differences observed in the eddy covariance data. For those cases where we could explain some of the difference in eWUE on the basis of species effects, we partitioned the scaled patterns in lWUE into two components: a component that is independent of canopy leaf area distribution, and therefore only dependent on species-specific differences in needle physiology; and a component that is independent of species differences in needle physiology, and only dependent on species-specific influences on canopy leaf area distribution. Only the component that is dependent on species influences on canopy leaf area distribution, and independent of inherent species differences in needle physiology, had potential to explain differences in eWUE between the two communities. Thus, when tree species effects are important, canopy structure, rather than species-specific needle physiology, has more potential to explain patterns in eWUE.


Assuntos
Ecossistema , Árvores/metabolismo , Água/metabolismo , Abies/metabolismo , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Geografia , Picea/metabolismo , Pinus/metabolismo , Transpiração Vegetal , Especificidade da Espécie
4.
Front Plant Sci ; 8: 585, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28536582

RESUMO

Widely distributed species are normally subjected to spatial heterogeneity in environmental conditions. In sessile organisms like plants, adaptive evolution and phenotypic plasticity of key functional traits are the main mechanisms through which species can respond to environmental heterogeneity and climate change. While extended research has been carried out in temperate species in this regard, there is still limited knowledge as to how species from seasonally-dry tropical climates respond to spatial and temporal variation in environmental conditions. In fact, studies of intraspecific genetically-based differences in functional traits are still largely unknown and studies in these ecosystems have largely focused on in situ comparisons where environmental and genetic effects cannot be differentiated. In this study, we tested for ecotypic differentiation and phenotypic plasticity in leaf economics spectrum (LES) traits, water use efficiency and growth rates under natural and manipulated precipitation regimes in a common garden experiment where seedlings of eight populations of the neotropical live oak Quercus oleoides were established. We also examined the extent to which intraspecific trait variation was associated with plant performance under different water availability. Similar to interspecific patterns among seasonally-dry tropical tree species, live oak populations with long and severe dry seasons had higher leaf nitrogen content and growth rates than mesic populations, which is consistent with a "fast" resource-acquisition strategy aimed to maximize carbon uptake during the wet season. Specific leaf area (SLA) was the best predictor of plant performance, but contrary to expectations, it was negatively associated with relative and absolute growth rates. This observation was partially explained by the negative association between SLA and area-based photosynthetic rates, which is contrary to LES expectations but similar to other recent intraspecific studies on evergreen oaks. Overall, our study shows strong intraspecific differences in functional traits in a tropical oak, Quercus oleoides, and suggests that precipitation regime has played an important role in driving adaptive divergence in this widespread species.

5.
Oecologia ; 127(2): 214-221, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24577652

RESUMO

Tropical forest soils are known to emit large amounts of reactive nitrogen oxide compounds, often referred to collectively as NOy (NOy = NO + NO2 + HNO3 + organic nitrates). Plants are known to assimilate and emit NOy and it is therefore likely that plant canopies affect the atmospheric concentration of reactive nitrogen compounds by assimilating or emitting some fraction of the soil-emitted NOy. It is crucial to understand the magnitude of the canopy effects and the primary environmental and physiological controls over NOy exchange in order to accurately quantify regional NOy inventories and parameterize models of tropospheric photochemistry. In this study we focused on nitrogen dioxide (NO2), which is the component of NOy that most directly catalyzes the chemistry of O3 dynamics, one of the most abundant oxidative species in the troposphere, and which has been reported as the NOy species that is most readily exchanged between plants and the atmosphere. Leaf chamber measurements of NO2 flux were measured in 25 tree species growing in a wet tropical forest in the Republic of Panama. NO2 was emitted to the atmosphere at ambient NO2 concentrations below 0.53-1.60 ppbv (the NO2 compensation point) depending on species, with the highest rate of emission being 50 pmol m(-2) s(-1) at <0.1 ppbv. NO2 was assimilated by leaves at ambient NO2 concentrations above the compensation point, with the maximum observed uptake rate being 1,550 pmol m(-2) s(-1) at 5 ppbv. No seasonal variation in leaf NO2 flux was observed in this study and leaf emission and uptake appeared to be primarily controlled by leaf nitrogen and stomatal conductance, respectively. When scaled to the entire canopy, soil NO emission rates to the atmosphere were estimated to be maximally altered ±19% by the overlying canopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA