Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(49): 24533-24541, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31744872

RESUMO

Members of the Pif1 family of helicases function in multiple pathways that involve DNA synthesis: DNA replication across G-quadruplexes; break-induced replication; and processing of long flaps during Okazaki fragment maturation. Furthermore, Pif1 increases strand-displacement DNA synthesis by DNA polymerase δ and allows DNA replication across arrays of proteins tightly bound to DNA. This is a surprising feat since DNA rewinding or annealing activities limit the amount of single-stranded DNA product that Pif1 can generate, leading to an apparently poorly processive helicase. In this work, using single-molecule Förster resonance energy transfer approaches, we show that 2 members of the Pif1 family of helicases, Pif1 from Saccharomyces cerevisiae and Pfh1 from Schizosaccharomyces pombe, unwind double-stranded DNA by a branched mechanism with 2 modes of activity. In the dominant mode, only short stretches of DNA can be processively and repetitively opened, with reclosure of the DNA occurring by mechanisms other than strand-switching. In the other less frequent mode, longer stretches of DNA are unwound via a path that is separate from the one leading to repetitive unwinding. Analysis of the kinetic partitioning between the 2 different modes suggests that the branching point in the mechanism is established by conformational selection, controlled by the interaction of the helicase with the 3' nontranslocating strand. The data suggest that the dominant and repetitive mode of DNA opening of the helicase can be used to allow efficient DNA replication, with DNA synthesis on the nontranslocating strand rectifying the DNA unwinding activity.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Trifosfato de Adenosina/metabolismo , DNA/química , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cinética , Saccharomyces cerevisiae/química , Schizosaccharomyces/química
2.
J Biol Chem ; 295(47): 15883-15891, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32913126

RESUMO

Successful DNA replication requires carefully regulated mechanisms to overcome numerous obstacles that naturally occur throughout chromosomal DNA. Scattered across the genome are tightly bound proteins, such as transcription factors and nucleosomes, that are necessary for cell function, but that also have the potential to impede timely DNA replication. Using biochemically reconstituted systems, we show that two transcription factors, yeast Reb1 and Tbf1, and a tightly positioned nucleosome, are strong blocks to the strand displacement DNA synthesis activity of DNA polymerase δ. Although the block imparted by Tbf1 can be overcome by the DNA-binding activity of the single-stranded DNA-binding protein RPA, efficient DNA replication through either a Reb1 or a nucleosome block occurs only in the presence of the 5'-3' DNA helicase Pif1. The Pif1-dependent stimulation of DNA synthesis across strong protein barriers may be beneficial during break-induced replication where barriers are expected to pose a problem to efficient DNA bubble migration. However, in the context of lagging strand DNA synthesis, the efficient disruption of a nucleosome barrier by Pif1 could lead to the futile re-replication of newly synthetized DNA. In the presence of FEN1 endonuclease, the major driver of nick translation during lagging strand replication, Pif1-dependent stimulation of DNA synthesis through a nucleosome or Reb1 barrier is prevented. By cleaving the short 5' tails generated during strand displacement, FEN1 eliminates the entry point for Pif1. We propose that this activity would protect the cell from potential DNA re-replication caused by unwarranted Pif1 interference during lagging strand replication.


Assuntos
Acetiltransferases/metabolismo , DNA Helicases/metabolismo , DNA Polimerase III/metabolismo , Replicação do DNA , DNA Fúngico/biossíntese , Proteínas de Membrana/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetiltransferases/genética , DNA Helicases/genética , DNA Polimerase III/genética , DNA Fúngico/genética , Proteínas de Membrana/genética , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 47(16): 8595-8605, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31340040

RESUMO

G-quadruplexes (G4s) are stable secondary structures that can lead to the stalling of replication forks and cause genomic instability. Pif1 is a 5' to 3' helicase, localized to both the mitochondria and nucleus that can unwind G4s in vitro and prevent fork stalling at G4 forming sequences in vivo. Using in vitro primer extension assays, we show that both G4s and stable hairpins form barriers to nuclear and mitochondrial DNA polymerases δ and γ, respectively. However, while single-stranded DNA binding proteins (SSBs) readily promote replication through hairpins, SSBs are only effective in promoting replication through weak G4s. Using a series of G4s with increasing stabilities, we reveal a threshold above which G4 through-replication is inhibited even with SSBs present, and Pif1 helicase is required. Because Pif1 moves along the template strand with a 5'-3'-directionality, head-on collisions between Pif1 and polymerase δ or γ result in the stimulation of their 3'-exonuclease activity. Both nuclear RPA and mitochondrial SSB play a protective role during DNA replication by preventing excessive DNA degradation caused by the helicase-polymerase conflict.


Assuntos
DNA Helicases/genética , DNA Polimerase III/genética , DNA Polimerase gama/genética , DNA Fúngico/genética , Quadruplex G , Proteína de Replicação A/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Núcleo Celular/metabolismo , DNA Helicases/metabolismo , DNA Polimerase III/metabolismo , DNA Polimerase gama/metabolismo , Replicação do DNA , DNA Fúngico/química , DNA Fúngico/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Genoma Fúngico , Instabilidade Genômica , Mitocôndrias/metabolismo , Ligação Proteica , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nucleic Acids Res ; 46(22): 11847-11857, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30395308

RESUMO

Pif1 DNA helicase is a potent unwinder of G-quadruplex (G4) structures in vitro and functions to maintain genome stability at G4 sequences in Saccharomyces cerevisiae. Here, we developed and utilized a live-cell imaging approach to quantitatively measure the progression rates of single replication forks through different G4 containing sequences in individual yeast cells. We show that in the absence of Pif1, replication rates through specific lagging strand G4 sequences in vivo is significantly decreased. In contrast, we found that in the absence of Pif1, replication rates through the same G4s on the leading strand are not decreased relative to the respective WT strains, showing that Pif1 is essential only for efficient replication through lagging strand G4s. Additionally, we show that a canonical PIP sequence in Pif1 interacts with PCNA and that replication through G4 structures is significantly slower in the absence of this interaction in vitro and in vivo. Thus, Pif1-PCNA interaction is essential for optimal replisome progression through G4 sequences, highlighting the importance of coupling between Pif1 activity and replisome progression during yeast genome replication.


Assuntos
DNA Helicases/genética , Replicação do DNA , DNA Fúngico/genética , Quadruplex G , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , DNA/genética , DNA/metabolismo , DNA Helicases/deficiência , DNA Fúngico/metabolismo , Instabilidade Genômica , Conformação de Ácido Nucleico , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Biochim Biophys Acta ; 1831(1): 139-46, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23000541

RESUMO

Sphingosine kinases 1 and 2 (SK1 and SK2) generate the bioactive lipid mediator sphingosine 1-phosphate and as such play a significant role in cell fate and in human health and disease. Despite significant interest in and examination of the role played by SK enzymes in disease, comparatively little is currently known about the three-dimensional structure and catalytic mechanisms of these enzymes. To date, limited numbers of studies have used site directed mutagenesis and activity determinations to examine the roles of individual SK residues in substrate, calmodulin, and membrane binding, as well as activation via phosphorylation. Assays are currently available that allow for both single and bisubstrate kinetic analysis of mutant proteins that show normal, lowered and enhanced activity as compared to wild type controls. Additional studies will be required to build on this foundation to completely understand SK mediated substrate binding and phosphoryl group transfer. A deeper understanding of the SK catalytic mechanism, as well as SK interactions with potential small molecule inhibitors will be invaluable to the future design and identification of SK activity modulators as research tools and potential therapeutics. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.


Assuntos
Biocatálise , Mutagênese Sítio-Dirigida , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sequência de Aminoácidos , Doença , Humanos , Cinética , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA