RESUMO
NLRP3-inflammasome-driven inflammation is involved in the pathogenesis of a variety of diseases. Identification of endogenous inflammasome activators is essential for the development of new anti-inflammatory treatment strategies. Here, we identified that apolipoprotein C3 (ApoC3) activates the NLRP3 inflammasome in human monocytes by inducing an alternative NLRP3 inflammasome via caspase-8 and dimerization of Toll-like receptors 2 and 4. Alternative inflammasome activation in human monocytes is mediated by the Toll-like receptor adapter protein SCIMP. This triggers Lyn/Syk-dependent calcium entry and the production of reactive oxygen species, leading to activation of caspase-8. In humanized mouse models, ApoC3 activated human monocytes in vivo to impede endothelial regeneration and promote kidney injury in an NLRP3- and caspase-8-dependent manner. These data provide new insights into the regulation of the NLRP3 inflammasome and the pathophysiological role of triglyceride-rich lipoproteins containing ApoC3. Targeting ApoC3 might prevent organ damage and provide an anti-inflammatory treatment for vascular and kidney diseases.
Assuntos
Injúria Renal Aguda/imunologia , Apolipoproteína C-III/imunologia , Caspase 8/metabolismo , Nefropatias/imunologia , Monócitos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Injúria Renal Aguda/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apolipoproteína C-III/genética , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Humanos , Inflamassomos/imunologia , Inflamação/genética , Inflamação/imunologia , Nefropatias/patologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismoRESUMO
BACKGROUND: Chronic kidney disease represents one of the strongest risk factors for cardiovascular diseases, and particularly for heart failure. Despite improved pharmaceutical treatments, mortality remains high. Recently, experimental studies demonstrated that mosaic loss of Y chromosome (LOY) associates with cardiac fibrosis in male mice. Since diffuse cardiac fibrosis is the common denominator for progression of all forms of heart failure, we determined the association of LOY on mortality and cardiovascular disease outcomes in patients with chronic kidney disease. METHODS: LOY was quantified in men with stable chronic kidney disease (CARE for HOMe study, n=279) and dialysis patients (4D study, n=544). The association between LOY and mortality, combined cardiovascular and heart failure-specific end points, and echocardiographic measures was assessed. RESULTS: In CARE for HOMe, the frequency of LOY increased with age. LOY >17% was associated with increased mortality (heart rate, 2.58 [95% CI, 1.33-5.03]) and risk for cardiac decompensation or death (heart rate, 2.30 [95% CI, 1.23-4.27]). Patients with LOY >17% showed a significant decline of ejection fraction and an increase of E/E' within 5 years. Consistently, in the 4D study, LOY >17% was significantly associated with increased mortality (heart rate, 2.76 [95% CI, 1.83-4.16]), higher risk of death due to heart failure and sudden cardiac death (heart rate, 4.11 [95% CI, 2.09-8.08]), but not atherosclerotic events. Patients with LOY >17% showed significantly higher plasma levels of soluble interleukin 1 receptor-like 1, a biomarker for myocardial fibrosis. Mechanistically, intermediate monocytes from patients with LOY >17% showed significantly higher C-C chemokine receptor type 2 expression and higher plasma levels of the C-C chemokine receptor type 2 chemokine (C-C motif) ligand 2, which may have contributed to increased heart failure events. CONCLUSIONS: LOY identifies male patients with chronic kidney disease at high risk for mortality and heart failure events.
Assuntos
Cromossomos Humanos Y , Insuficiência Renal Crônica , Humanos , Masculino , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/mortalidade , Insuficiência Renal Crônica/genética , Idoso , Pessoa de Meia-Idade , Cromossomos Humanos Y/genética , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/mortalidade , Idoso de 80 Anos ou mais , Fatores de Risco , FibroseRESUMO
BACKGROUND: Activation of the immune system contributes to cardiovascular diseases. The role of human-specific long noncoding RNAs in cardioimmunology is poorly understood. METHODS: Single-cell sequencing in peripheral blood mononuclear cells revealed a novel human-specific long noncoding RNA called HEAT4 (heart failure-associated transcript 4). HEAT4 expression was assessed in several in vitro and ex vivo models of immune cell activation, as well as in the blood of patients with heart failure (HF), acute myocardial infarction, or cardiogenic shock. The transcriptional regulation of HEAT4 was verified through cytokine treatment and single-cell sequencing. Loss-of-function and gain-of-function studies and multiple RNA-protein interaction assays uncovered a mechanistic role of HEAT4 in the monocyte anti-inflammatory gene program. HEAT4 expression and function was characterized in a vascular injury model in NOD.CB17-Prkdc scid/Rj mice. RESULTS: HEAT4 expression was increased in the blood of patients with HF, acute myocardial infarction, or cardiogenic shock. HEAT4 levels distinguished patients with HF from people without HF and predicted all-cause mortality in a cohort of patients with HF over 7 years of follow-up. Monocytes, particularly anti-inflammatory CD16+ monocytes, which are increased in patients with HF, are the primary source of HEAT4 expression in the blood. HEAT4 is transcriptionally activated by treatment with anti-inflammatory interleukin-10. HEAT4 activates anti-inflammatory and inhibits proinflammatory gene expression. Increased HEAT4 levels result in a shift toward more CD16+ monocytes. HEAT4 binds to S100A9, causing a monocyte subtype switch, thereby reducing inflammation. As a result, HEAT4 improves endothelial barrier integrity during inflammation and promotes vascular healing after injury in mice. CONCLUSIONS: These results characterize a novel endogenous anti-inflammatory pathway that involves the conversion of monocyte subtypes into anti-inflammatory CD16+ monocytes. The data identify a novel function for the class of long noncoding RNAs by preventing protein secretion and suggest long noncoding RNAs as potential targets for interventions in the field of cardioimmunology.
Assuntos
Inflamação , Monócitos , RNA Longo não Codificante , Humanos , Monócitos/metabolismo , Monócitos/imunologia , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Inflamação/metabolismo , Camundongos , Masculino , Feminino , Camundongos SCID , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologiaRESUMO
BACKGROUND: In patients with chronic kidney disease (CKD), atrial fibrillation (AF) is highly prevalent and represents a major risk factor for stroke and death. CKD is associated with atrial proarrhythmic remodeling and activation of the sympathetic nervous system. Whether reduction of the sympathetic nerve activity by renal denervation (RDN) inhibits AF vulnerability in CKD is unknown. METHODS: Left atrial (LA) fibrosis was analyzed in samples from patients with AF and concomitant CKD (estimated glomerular filtration rate [eGFR], <60 mL/min per 1.73 m2) using picrosirius red and compared with AF patients without CKD and patients with sinus rhythm with and without CKD. In a translational approach, male Sprague Dawley rats were fed with 0.25% adenine (AD)-containing chow for 16 weeks to induce CKD. At week 5, AD-fed rats underwent RDN or sham operation (AD). Rats on normal chow served as control. After 16 weeks, cardiac function and AF susceptibility were assessed by echocardiography, radiotelemetry, electrophysiological mapping, and burst stimulation, respectively. LA tissue was histologically analyzed for sympathetic innervation using tyrosine hydroxylase staining, and LA fibrosis was determined using picrosirius red. RESULTS: Sirius red staining demonstrated significantly increased LA fibrosis in patients with AF+CKD compared with AF without CKD or sinus rhythm. In rats, AD demonstrated LA structural changes with enhanced sympathetic innervation compared with control. In AD, LA enlargement was associated with prolonged duration of induced AF episodes, impaired LA conduction latency, and increased absolute conduction inhomogeneity. RDN treatment improved LA remodeling and reduced LA diameter compared with sham-operated AD. Furthermore, RDN decreased AF susceptibility and ameliorated LA conduction latency and absolute conduction inhomogeneity, independent of blood pressure reduction and renal function. CONCLUSIONS: In an experimental rat model of CKD, RDN inhibited progression of atrial structural and electrophysiological remodeling. Therefore, RDN represents a potential therapeutic tool to reduce the risk of AF in CKD, independent of changes in renal function and blood pressure.
Assuntos
Fibrilação Atrial , Remodelamento Atrial , Insuficiência Renal Crônica , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/prevenção & controle , Denervação , Feminino , Fibrose , Humanos , Rim/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/complicaçõesRESUMO
Fibroblast growth factor 23 (FGF23), a hormone generally derived from bone, is important in phosphate and vitamin D homeostasis. In acute kidney injury (AKI) patients, high-circulating FGF23 levels are associated with disease progression and mortality. However, the organ and cell type of FGF23 production in AKI and the molecular mechanism of its excessive production are still unidentified. For insight, we investigated folic acid (FA)-induced AKI in mice. Interestingly, simultaneous with FGF23, orphan nuclear receptor ERR-γ expression is increased in the liver of FA-treated mice, and ectopic overexpression of ERR-γ was sufficient to induce hepatic FGF23 production. In patients and in mice, AKI is accompanied by up-regulated systemic IL-6, which was previously identified as an upstream regulator of ERR-γ expression in the liver. Administration of IL-6 neutralizing antibody to FA-treated mice or of recombinant IL-6 to healthy mice confirms IL-6 as an upstream regulator of hepatic ERR-γ-mediated FGF23 production. A significant (P < 0.001) interconnection between high IL-6 and FGF23 levels as a predictor of AKI in patients that underwent cardiac surgery was also found, suggesting the clinical relevance of the finding. Finally, liver-specific depletion of ERR-γ or treatment with an inverse ERR-γ agonist decreased hepatic FGF23 expression and plasma FGF23 levels in mice with FA-induced AKI. Thus, inverse agonist of ERR-γ may represent a therapeutic strategy to reduce adverse plasma FGF23 levels in AKI.
Assuntos
Injúria Renal Aguda/fisiopatologia , Fator de Crescimento de Fibroblastos 23/metabolismo , Receptores de Estrogênio/metabolismo , Injúria Renal Aguda/metabolismo , Animais , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23/genética , Ácido Fólico/efeitos adversos , Ácido Fólico/farmacologia , Interleucina-6/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nucleares Órfãos/metabolismo , Receptores de Estrogênio/genética , Ativação TranscricionalRESUMO
Inflammation is intimately involved in the pathogenesis of diabetic kidney disease. Inhibition of SGLT-2 by a specific class of drugs, gliflozins, has been shown to reduce inflammation and attenuate the progression of diabetic nephropathy, in addition to its main effect of inhibiting renal glucose reabsorption. We used highly purified human renal proximal tubular epithelial cells (PTCs) as an in vitro model to study the cellular response to a diabetic (high glucose) and inflammatory (cytokines) microenvironment and the effect of gliflozins. In this context, we investigated the influence of SGLT-2 inhibition by empa- and dapagliflozin (500 nM) on the expression of pro-inflammatory factors (IL-1ß, IL-6, TNF-α, MCP-1, and ICAM-1). The results clearly indicate an anti-inflammatory effect of both gliflozins. Although induced expression of the four cytokines was only slightly attenuated, there was a clear effect on the expression of the adhesion molecule ICAM-1, a master regulator of cellular responses in inflammation and injury resolution. The induced expression of ICAM-1 mRNA was significantly reduced by approximately 13.5% by empagliflozin and also showed an inhibitory trend with dapagliflozin. However, induced ICAM-1 protein expression was significantly inhibited from 24.71 ± 1.0 ng/mL to 18.81 ± 3.9 (empagliflozin) and 19.62 ± 2.1 ng/mL (dapagliflozin). In conclusion, an additional anti-inflammatory effect of empa- and dapagliflozin in therapeutically observed concentrations was demonstrated in primary human PTCs in vitro.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Nefropatias Diabéticas/metabolismo , Glucose/metabolismo , Células Epiteliais/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus/metabolismoRESUMO
BACKGROUND: Cardiovascular diseases and chronic kidney disease (CKD) are highly prevalent, aggravate each other, and account for substantial mortality. Both conditions are characterized by activation of the innate immune system. The alarmin interleukin-1α (IL-1α) is expressed in a variety of cell types promoting (sterile) systemic inflammation. The aim of the present study was to examine the role of IL-1α in mediating inflammation in the setting of acute myocardial infarction (AMI) and CKD. METHODS: We assessed the expression of IL-1α on the surface of monocytes from patients with AMI and patients with CKD and determined its association with atherosclerotic cardiovascular disease events during follow-up in an explorative clinical study. Furthermore, we assessed the inflammatory effects of IL-1α in several organ injury models in Il1a-/- and Il1b-/- mice and investigated the underlying mechanisms in vitro in monocytes and endothelial cells. RESULTS: IL-1α is strongly expressed on the surface of monocytes from patients with AMI and CKD compared with healthy controls. Higher IL-1α surface expression on monocytes from patients with AMI and CKD was associated with a higher risk for atherosclerotic cardiovascular disease events, which underlines the clinical relevance of IL-1α. In mice, IL-1α, but not IL-1ß, mediates leukocyte-endothelial adhesion as determined by intravital microscopy. IL-1α promotes accumulation of macrophages and neutrophils in inflamed tissue in vivo. Furthermore, IL-1α on monocytes stimulates their homing at sites of vascular injury. A variety of stimuli such as free fatty acids or oxalate crystals induce IL-1α surface expression and release by monocytes, which then mediates their adhesion to the endothelium via IL-1 receptor-1. IL-1α also promotes expression of the VCAM-1 (vascular cell adhesion molecule-1) on endothelial cells, thereby fostering the adhesion of circulating leukocytes. IL-1α induces inflammatory injury after experimental AMI, and abrogation of IL-1α prevents the development of CKD in oxalate or adenine-fed mice. CONCLUSIONS: IL-1α represents a key mediator of leukocyte-endothelial adhesion and inflammation in AMI and CKD. Inhibition of IL-1α may serve as a novel anti-inflammatory treatment strategy.
Assuntos
Adesão Celular/fisiologia , Células Endoteliais/metabolismo , Interleucina-1alfa/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Insuficiência Renal Crônica/tratamento farmacológico , Animais , Adesão Celular/efeitos dos fármacos , Endotélio/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1alfa/farmacologia , Camundongos , Monócitos/metabolismo , Infarto do Miocárdio/metabolismo , Neutrófilos/metabolismo , Insuficiência Renal Crônica/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismoRESUMO
Activation of the Wnt/ß-catenin pathway represents a hallmark in the development of kidney fibrosis. Herein, Chen et al. report that Klotho-derived peptide 6, a peptide mimicking the function of the protein Klotho, directly binds to endogenous Wnt ligands and, thereby, serves as a small-molecule inhibitor of canonical Wnt/ß-catenin signaling. In diabetic kidney disease, Klotho-derived peptide 6 reduces glomerular injury and preserves kidney function, highlighting Klotho-derived peptide 6 as a novel therapeutic agent.
Assuntos
Nefropatias Diabéticas , Proteínas Klotho , Via de Sinalização Wnt , beta Catenina , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Glucuronidase/metabolismo , Humanos , Rim/metabolismo , Proteínas Klotho/genética , Proteínas Klotho/metabolismo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/genética , beta Catenina/metabolismoRESUMO
Chronic kidney disease (CKD) is accompanied with extensive cardiovascular calcification, in part correlating with functional vitamin K deficiency. Here, we sought to determine causes for vitamin K deficiency beyond reduced dietary intake. Initially, vitamin K uptake and distribution into circulating lipoproteins after a single administration of vitamin K1 plus K2 (menaquinone 4 and menaquinone 7, respectively) was determined in patients on dialysis therapy and healthy individuals. The patients incorporated very little menaquinone 7 but more menaquinone 4 into high density lipoprotein (HDL) and low-density lipoprotein particles than did healthy individuals. In contrast to healthy persons, HDL particles from the patients could not be spiked with menaquinone 7 in vitro and HDL uptake was diminished in osteoblasts. A reduced carboxylation activity (low vitamin K activity) of uremic HDL particles spiked with menaquinone 7 vs. that of controls was confirmed in a bioassay using human primary vascular smooth muscle cells. Kidney menaquinone 4 tissue levels were reduced in 5/6-nephrectomized versus sham-operated C57BL/6 mice after four weeks of a vitamin K rich diet. From the analyzed enzymes involved in vitamin K metabolism, kidney HMG-CoA reductase protein was reduced in both rats and patients with CKD. In a trial on the efficacy and safety of atorvastatin in 1051 patients with type 2 diabetes receiving dialysis therapy, no pronounced vitamin K deficiency was noted. However, the highest levels of PIVKA-II (biomarker of subclinical vitamin K deficiency) were noted when a statin was combined with a proton pump inhibitor. Thus, profound disturbances in lipoprotein mediated vitamin K transport and metabolism in uremia suggest that menaquinone 7 supplementation to patients on dialysis therapy has reduced efficacy.
Assuntos
Insuficiência Renal Crônica , Deficiência de Vitamina K , Vitamina K/metabolismo , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Insuficiência Renal Crônica/metabolismo , Distribuição Tecidual , Vitamina K/uso terapêutico , Vitamina K 1/metabolismo , Vitamina K 1/uso terapêutico , Vitamina K 2/metabolismo , Vitamina K 2/uso terapêutico , Deficiência de Vitamina K/complicações , Deficiência de Vitamina K/metabolismoRESUMO
Sortilin, an intracellular sorting receptor, has been identified as a cardiovascular risk factor in the general population. Patients with chronic kidney disease (CKD) are highly susceptible to develop cardiovascular complications such as calcification. However, specific CKD-induced posttranslational protein modifications of sortilin and their link to cardiovascular calcification remain unknown. To investigate this, we examined two independent CKD cohorts for carbamylation of circulating sortilin and detected increased carbamylated sortilin lysine residues in the extracellular domain of sortilin with kidney function decline using targeted mass spectrometry. Structure analysis predicted altered ligand binding by carbamylated sortilin, which was verified by binding studies using surface plasmon resonance measurement, showing an increased affinity of interleukin 6 to in vitro carbamylated sortilin. Further, carbamylated sortilin increased vascular calcification in vitro and ex vivo that was accelerated by interleukin 6. Imaging by mass spectrometry of human calcified arteries revealed in situ carbamylated sortilin. In patients with CKD, sortilin carbamylation was associated with coronary artery calcification, independent of age and kidney function. Moreover, patients with carbamylated sortilin displayed significantly faster progression of coronary artery calcification than patients without sortilin carbamylation. Thus, carbamylated sortilin may be a risk factor for cardiovascular calcification and may contribute to elevated cardiovascular complications in patients with CKD.
Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Proteínas Adaptadoras de Transporte Vesicular , Humanos , Carbamilação de Proteínas , Processamento de Proteína Pós-Traducional , Calcificação Vascular/etiologiaRESUMO
Chronic kidney disease (CKD) triggers the risk of developing uremic cardiomyopathy as characterized by cardiac hypertrophy, fibrosis and functional impairment. Traditionally, animal studies are used to reveal the underlying pathological mechanism, although variable CKD models, mouse strains and readouts may reveal diverse results. Here, we systematically reviewed 88 studies and performed meta-analyses of 52 to support finding suitable animal models for future experimental studies on pathological kidney-heart crosstalk during uremic cardiomyopathy. We compared different mouse strains and the direct effect of CKD on cardiac hypertrophy, fibrosis and cardiac function in "single hit" strategies as well as cardiac effects of kidney injury combined with additional cardiovascular risk factors in "multifactorial hit" strategies. In C57BL/6 mice, CKD was associated with a mild increase in cardiac hypertrophy and fibrosis and marginal systolic dysfunction. Studies revealed high variability in results, especially regarding hypertrophy and systolic function. Cardiac hypertrophy in CKD was more consistently observed in 129/Sv mice, which express two instead of one renin gene and more consistently develop increased blood pressure upon CKD induction. Overall, "multifactorial hit" models more consistently induced cardiac hypertrophy and fibrosis compared to "single hit" kidney injury models. Thus, genetic factors and additional cardiovascular risk factors can "prime" for susceptibility to organ damage, with increased blood pressure, cardiac hypertrophy and early cardiac fibrosis more consistently observed in 129/Sv compared to C57BL/6 strains.
Assuntos
Cardiomiopatias , Insuficiência Renal Crônica , Animais , Cardiomiopatias/genética , Modelos Animais de Doenças , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/complicaçõesRESUMO
Atrial fibrillation (AF) is highly prevalent in hypertensive patients with metabolic syndrome and is related to inflammation and activation of the sympathoadrenergic system. The multi-ligand Receptor-for-Advanced-Glycation-End-products (RAGE) activates inflammation-associated tissue remodeling and is regulated by the sympathetic nervous system. Its counterpart, soluble RAGE (sRAGE), serves as anti-inflammatory decoy receptor with protective properties. We investigated the effect of sympathetic modulation by renal denervation (RDN) on atrial remodeling, RAGE/sRAGE and RAGE ligands in metabolic syndrome. RDN was performed in spontaneously hypertensive obese rats (SHRob) with metabolic syndrome compared with lean spontaneously hypertensive rats (SHR) and with normotensive non-obese control rats. Blood pressure and heart rate were measured by telemetry. The animals were killed 12 weeks after RDN. Left atrial (LA) and right atrial (RA) remodeling was assessed by histological analysis and collagen types. Sympathetic innervation was measured by tyrosine hydroxylase staining of atrial nerve fibers, RAGE/sRAGE, RAGE ligands, cytokine expressions and inflammatory infiltrates were analyzed by Western blot and immunofluorescence staining. LA sympathetic nerve fiber density was higher in SHRob (+44%) versus controls and reduced after RDN (-64% versus SHRob). RAGE was increased (+718%) and sRAGE decreased (- 62%) in SHRob as compared with controls. RDN reduced RAGE expression (- 61% versus SHRob), significantly increased sRAGE levels (+162%) and induced a significant decrease in RAGE ligand levels in SHRob (- 57% CML and - 51% HMGB1) with reduced pro-inflammatory NFkB activation (- 96%), IL-6 production (- 55%) and reduced inflammatory infiltrates. This led to a reduction in atrial fibrosis (- 33%), collagen type I content (- 72%), accompanied by reduced LA myocyte hypertrophy (- 21%). Transfection experiments on H9C2 cardiomyoblasts demonstrated that RAGE is directly involved in fibrosis formation by influencing cellular production of collagen type I. In conclusion, suppression of renal sympathetic nerve activity by RDN prevents atrial remodeling in metabolic syndrome by reducing atrial sympathetic innervation and by modulating RAGE/sRAGE balance and reducing pro-inflammatory and pro-fibrotic RAGE ligands, which provides a potential therapeutic mechanism to reduce the development of AF.
Assuntos
Remodelamento Atrial , Denervação , Hipertensão , Rim , Síndrome Metabólica , Receptor para Produtos Finais de Glicação Avançada , Animais , Fibrilação Atrial/metabolismo , Colágeno Tipo I , Denervação/métodos , Fibrose , Hipertensão/complicações , Hipertensão/metabolismo , Inflamação/metabolismo , Rim/inervação , Rim/cirurgia , Ligantes , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Síndrome Metabólica/terapia , Obesidade/metabolismo , Ratos , Ratos Endogâmicos SHR , Receptor para Produtos Finais de Glicação Avançada/metabolismoRESUMO
BACKGROUND: Guidelines recommend physical activity to reduce cardiovascular (CV) events. The association between physical activity and progression of chronic kidney disease (CKD) with and without diabetes is unknown. We assessed the association of self-reported physical activity with renal and CV outcomes in high-risk patients aged ≥ 55 years over a median follow-up of 56 months in post-hoc analysis of a previously randomized trial program. METHODS: Analyses were done with Cox regression analysis, mixed models for repeated measures, ANOVA and χ2-test. 31,312 patients, among them 19,664 with and 11,648 without diabetes were analyzed. RESULTS: Physical activity was inversely associated with renal outcomes (doubling of creatinine, end-stage kidney disease (ESRD)) and CV outcomes (CV death, myocardial infarction, stroke, heart failure hospitalization). Moderate activity (at least 2 times/week to every day) was associated with lower risk of renal outcomes and lower incidence of new albuminuria (p < 0.0001 for both) compared to lower exercise levels. Similar results were observed for those with and without diabetes without interaction for renal outcomes (p = 0.097-0.27). Physical activity was associated with reduced eGFR decline with a moderate association between activity and diabetes status (p = 0.05). CONCLUSIONS: Moderate physical activity was associated with improved kidney outcomes with a threshold at two sessions per week. The association of physical activity with renal outcomes did not meaningfully differ with or without diabetes but absolute benefit of activity was even greater in people with diabetes. Thus, risks were similar between those with diabetes undertaking high physical activity and those without diabetes but low physical activity. CLINICAL TRIAL REGISTRATION: http://clinicaltrials.gov.uniqueidentifier :NCT00153101.
Assuntos
Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus/terapia , Nefropatias Diabéticas/terapia , Exercício Físico , Estilo de Vida Saudável , Falência Renal Crônica/prevenção & controle , Insuficiência Renal Crônica/terapia , Comportamento de Redução do Risco , Idoso , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/fisiopatologia , Bases de Dados Factuais , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/mortalidade , Diabetes Mellitus/fisiopatologia , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/mortalidade , Nefropatias Diabéticas/fisiopatologia , Feminino , Taxa de Filtração Glomerular , Fatores de Risco de Doenças Cardíacas , Humanos , Rim/fisiopatologia , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/mortalidade , Falência Renal Crônica/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fatores de Proteção , Ensaios Clínicos Controlados Aleatórios como Assunto , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/mortalidade , Insuficiência Renal Crônica/fisiopatologia , Medição de Risco , Fatores de Tempo , Resultado do TratamentoRESUMO
Endothelial injury and dysfunction (ED) represent a link between cardiovascular risk factors promoting hypertension and atherosclerosis, the leading cause of death in Western populations. High-density lipoprotein (HDL) is considered antiatherogenic and known to prevent ED. Using HDL from children and adults with chronic kidney dysfunction (HDL(CKD)), a population with high cardiovascular risk, we have demonstrated that HDL(CKD) in contrast to HDL(Healthy) promoted endothelial superoxide production, substantially reduced nitric oxide (NO) bioavailability, and subsequently increased arterial blood pressure (ABP). We have identified symmetric dimethylarginine (SDMA) in HDL(CKD) that causes transformation from physiological HDL into an abnormal lipoprotein inducing ED. Furthermore, we report that HDL(CKD) reduced endothelial NO availability via toll-like receptor-2 (TLR-2), leading to impaired endothelial repair, increased proinflammatory activation, and ABP. These data demonstrate how SDMA can modify the HDL particle to mimic a damage-associated molecular pattern that activates TLR-2 via a TLR-1- or TLR-6-coreceptor-independent pathway, linking abnormal HDL to innate immunity, ED, and hypertension.
Assuntos
Aterosclerose/imunologia , Hipertensão/imunologia , Nefropatias/imunologia , Lipoproteínas HDL/metabolismo , Receptor 2 Toll-Like/metabolismo , Adulto , Animais , Arginina/análogos & derivados , Arginina/química , Pressão Arterial , Criança , Endotélio , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Lipoproteínas HDL/química , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Transdução de Sinais , Superóxidos/metabolismo , Receptor 2 Toll-Like/genética , CicatrizaçãoRESUMO
BACKGROUND: Coexistent CKD and cardiovascular diseases are highly prevalent in Western populations and account for substantial mortality. We recently found that apolipoprotein C-3 (ApoC3), a major constituent of triglyceride-rich lipoproteins, induces sterile systemic inflammation by activating the NOD-like receptor protein-3 (NLRP3) inflammasome in human monocytes via an alternative pathway. METHODS: To identify posttranslational modifications of ApoC3 in patients with CKD, we used mass spectrometry to analyze ApoC3 from such patients and from healthy individuals. We determined the effects of posttranslationally modified ApoC3 on monocyte inflammatory response in vitro, as well as in humanized mice subjected to unilateral ureter ligation (a kidney fibrosis model) and in a humanized mouse model for vascular injury and regeneration. Finally, we conducted a prospective observational trial of 543 patients with CKD to explore the association of posttranslationally modified ApoC3 with renal and cardiovascular events in such patients. RESULTS: We identified significant posttranslational guanidinylation of ApoC3 (gApoC3) in patients with CKD. We also found that mechanistically, guanidine and urea induce guanidinylation of ApoC3. A 2D-proteomic analysis revealed that gApoC3 accumulated in kidneys and plasma in a CKD mouse model (mice fed an adenine-rich diet). In addition, gApoC3 augmented the proinflammatory effects of ApoC3 in monocytes in vitro . In humanized mice, gApoC3 promoted kidney tissue fibrosis and impeded vascular regeneration. In CKD patients, higher gApoC3 plasma levels (as determined by mass spectrometry) were associated with increased mortality as well as with renal and cardiovascular events. CONCLUSIONS: Guanidinylation of ApoC3 represents a novel pathogenic mechanism in CKD and CKD-associated vascular injury, pointing to gApoC3 as a potential therapeutic target.
Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Lesões do Sistema Vascular , Humanos , Camundongos , Animais , Apolipoproteína C-III/metabolismo , Proteômica , Modelos Animais de Doenças , Rim/metabolismo , FibroseRESUMO
Chronic kidney disease (CKD) is associated with high cardiovascular risk. CKD patients exhibit a specific lipoprotein pattern termed 'uraemic dyslipidaemia', which is characterized by rather normal low-density lipoprotein cholesterol, low high-density lipoprotein cholesterol, and high triglyceride plasma levels. All three lipoprotein classes are involved in the pathogenesis of CKD-associated cardiovascular diseases (CVDs). Uraemia leads to several modifications of the structure of lipoproteins such as changes of the proteome and the lipidome, post-translational protein modifications (e.g. carbamylation) and accumulation of small-molecular substances within the lipoprotein moieties, which affect their functionality. Lipoproteins from CKD patients interfere with lipid transport and promote inflammation, oxidative stress, endothelial dysfunction as well as other features of atherogenesis, thus contributing to the development of CKD-associated CVD. While, lipid-modifying therapies play an important role in the management of CKD patients, their efficacy is modulated by kidney function. Novel therapeutic agents to prevent the adverse remodelling of lipoproteins in CKD and to improve their functional properties are highly desirable and partially under development.
Assuntos
Doenças Cardiovasculares , Dislipidemias , Insuficiência Renal Crônica , Doenças Cardiovasculares/etiologia , Humanos , Lipoproteínas , TriglicerídeosRESUMO
In the heart, the serine carboxypeptidase cathepsin A (CatA) is distributed between lysosomes and the extracellular matrix (ECM). CatA-mediated degradation of extracellular peptides may contribute to ECM remodeling and left ventricular (LV) dysfunction. Here, we aimed to evaluate the effects of CatA overexpression on LV remodeling. A proteomic analysis of the secretome of adult mouse cardiac fibroblasts upon digestion by CatA identified the extracellular antioxidant enzyme superoxide dismutase (EC-SOD) as a novel substrate of CatA, which decreased EC-SOD abundance 5-fold. In vitro, both cardiomyocytes and cardiac fibroblasts expressed and secreted CatA protein, and only cardiac fibroblasts expressed and secreted EC-SOD protein. Cardiomyocyte-specific CatA overexpression and increased CatA activity in the LV of transgenic mice (CatA-TG) reduced EC-SOD protein levels by 43%. Loss of EC-SOD-mediated antioxidative activity resulted in significant accumulation of superoxide radicals (WT, 4.54 µmol/mg tissue/min; CatA-TG, 8.62 µmol/mg tissue/min), increased inflammation, myocyte hypertrophy (WT, 19.8 µm; CatA-TG, 21.9 µm), cellular apoptosis, and elevated mRNA expression of hypertrophy-related and profibrotic marker genes, without affecting intracellular detoxifying proteins. In CatA-TG mice, LV interstitial fibrosis formation was enhanced by 19%, and the type I/type III collagen ratio was shifted toward higher abundance of collagen I fibers. Cardiac remodeling in CatA-TG was accompanied by an increased LV weight/body weight ratio and LV end diastolic volume (WT, 50.8 µl; CatA-TG, 61.9 µl). In conclusion, CatA-mediated EC-SOD reduction in the heart contributes to increased oxidative stress, myocyte hypertrophy, ECM remodeling, and inflammation, implicating CatA as a potential therapeutic target to prevent ventricular remodeling.
Assuntos
Catepsina A/metabolismo , Miócitos Cardíacos/metabolismo , Proteólise , Superóxido Dismutase/metabolismo , Remodelação Ventricular , Animais , Catepsina A/genética , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Superóxido Dismutase/genéticaRESUMO
Chronic kidney disease (CKD) represents a global public health problem with high disease related morbidity and mortality. Since CKD etiology is heterogeneous, early recognition of patients at risk for progressive kidney injury is important. Here, we evaluated the tubular epithelial derived glycoprotein dickkopf-3 (DKK3) as a urinary marker for the identification of progressive kidney injury in a non-CKD cohort of patients with chronic obstructive pulmonary disease (COPD) and in an experimental model. In COSYCONET, a prospective multicenter trial comprising 2,314 patients with stable COPD (follow-up 37.1 months), baseline urinary DKK3, proteinuria and estimated glomerular filtration rate (eGFR) were tested for their association with the risk of declining eGFR and the COPD marker, forced expiratory volume in one second. Baseline urinary DKK3 but not proteinuria or eGFR identified patients with a significantly higher risk for over a 10% (odds ratio: 1.54, 95% confidence interval: 1.13-2.08) and over a 20% (2.59: 1.28-5.25) decline of eGFR during follow-up. In particular, DKK3 was associated with a significantly higher risk for declining eGFR in patients with eGFR over 90 ml/min/1.73m2 and proteinuria under 30 mg/g. DKK3 was also associated with declining COPD marker (2.90: 1.70-4.68). The impact of DKK3 was further explored in wild-type and Dkk3-/- mice subjected to cigarette smoke-induced lung injury combined with a CKD model. In this model, genetic abrogation of DKK3 resulted in reduced pulmonary inflammation and preserved kidney function. Thus, our data highlight urinary DKK3 as a possible marker for early identification of patients with silent progressive CKD and for adverse outcomes in patients with COPD.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Insuficiência Renal Crônica , Animais , Progressão da Doença , Taxa de Filtração Glomerular , Humanos , Rim , Camundongos , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Insuficiência Renal Crônica/diagnósticoRESUMO
Chronic kidney disease (CKD) is a global public health problem accompanied by substantial comorbidities and reduced life expectancy. In this respect, progressive CKD leading to uraemia can be seen as a systemic disease with a critical impact on virtually all organ systems. Therefore, it is of particular importance to identify patients with ongoing CKD progression, which is challenging, because the individual course of CKD is difficult to predict. Patterns of progression in CKD patients include linear and non-linear trajectories of GFR loss, but kidney function can also remain stable for years. Moreover, a substantial GFR decline may occur in the absence of higher-grade albuminuria (non-proteinuric CKD), rendering the measurement of albuminuria less reliable for progression prediction in such individuals. In the present review, we focus on the recently identified glycoprotein Dickkopf-3 (DKK3) as a stress-induced, renal tubular epithelial cell-derived, pro-fibrotic molecule. In experimental CKD models, DKK3 promoted renal tubulointerstitial fibrosis through modulation of the canonical Wnt/ß-catenin signalling pathway. In clinical studies, increased urinary DKK3 levels identified patients at high risk for short-term CKD progression, regardless of the cause of kidney disease, baseline kidney function and albuminuria. Moreover, increased urinary DKK3 levels are associated with a high risk for acute kidney injury and the subsequent loss of kidney function after cardiac surgery. These findings highlight DKK3 as a mediator of renal tubular cell damage in kidney injury and short-term progression of kidney disease, with potential therapeutic implications.