Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 157(3): 676-88, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766811

RESUMO

During social interactions, an individual's behavior is largely governed by the subset of signals emitted by others. Discrimination of "self" from "other" regulates the territorial urine countermarking behavior of mice. To identify the cues for this social discrimination and understand how they are interpreted, we designed an olfactory-dependent countermarking assay. We find major urinary proteins (MUPs) sufficient to elicit countermarking, and unlike other vomeronasal ligands that are detected by specifically tuned sensory neurons, MUPs are detected by a combinatorial strategy. A chemosensory signature of "self" that modulates behavior is developed via experience through exposure to a repertoire of MUPs. In contrast, aggression can be elicited by MUPs in an experience-independent but context-dependent manner. These findings reveal that individually emitted chemical cues can be interpreted based on their combinatorial permutation and relative ratios, and they can transmit both fixed and learned information to promote multiple behaviors.


Assuntos
Camundongos/fisiologia , Feromônios/análise , Feromônios/metabolismo , Proteínas/análise , Proteínas/metabolismo , Comportamento Social , Animais , Feminino , Ligantes , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
2.
PLoS Biol ; 21(7): e3002221, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498809

RESUMO

Investigation of brain function has been fueled by an accelerating development of novel technologies and tools. This Perspective looks at the unprecedented neurotechnological progress of the past 2 decades and discusses future strategies to elucidate brain function.


Assuntos
Neurociências , Encéfalo , Previsões , Tecnologia
3.
J Neurosci ; 43(50): 8700-8722, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37903594

RESUMO

Social communication is crucial for the survival of many species. In most vertebrates, a dedicated chemosensory system, the vomeronasal system (VNS), evolved to process ethologically relevant chemosensory cues. The first central processing stage of the VNS is the accessory olfactory bulb (AOB), which sends information to downstream brain regions via AOB mitral cells (AMCs). Recent studies provided important insights about the functional properties of AMCs, but little is known about the principles that govern their coordinated activity. Here, we recorded local field potentials (LFPs) and single-unit activity in the AOB of adult male and female mice during presentation of natural stimuli. Our recordings reveal prominent LFP theta-band oscillatory episodes with a characteristic spatial pattern across the AOB. Throughout an experiment, the AOB network shows varying degrees of similarity to this pattern, in a manner that depends on the sensory stimulus. Analysis of LFP signal polarity and single-unit activity indicates that oscillatory episodes are generated locally within the AOB, likely representing a reciprocal interaction between AMCs and granule cells. Notably, spike times of many AMCs are constrained to the negative LFP oscillation phase in a manner that can drastically affect integration by downstream processing stages. Based on these observations, we propose that LFP oscillations may gate, bind, and organize outgoing signals from individual AOB neurons to downstream processing stages. Our findings suggest that, as in other neuronal systems and brain regions, population-level oscillations play a key role in organizing and enhancing transmission of socially relevant chemosensory information.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is the first central stage of the vomeronasal system, a chemosensory system dedicated to processing cues from other organisms. Information from the AOB is conveyed to other brain regions via activity of its principal neurons, AOB mitral cells (AMCs). Here, we show that socially relevant sensory stimulation of the mouse vomeronasal system leads not only to changes in AMC activity, but also to distinct theta-band (∼5 Hz) oscillatory episodes in the local field potential. Notably AMCs favor the negative phase of these oscillatory events. Our findings suggest a novel mechanism for the temporal coordination of distributed patterns of neuronal activity, which can serve to efficiently activate downstream processing stages.


Assuntos
Neurônios , Bulbo Olfatório , Camundongos , Masculino , Feminino , Animais , Bulbo Olfatório/fisiologia , Neurônios/fisiologia , Sinais (Psicologia)
4.
J Neurosci ; 42(4): 601-618, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34844990

RESUMO

Precise information flow from the hippocampus (HP) to prefrontal cortex (PFC) emerges during early development and accounts for cognitive processing throughout life. On flip side, this flow is selectively impaired in mental illness. In mouse models of psychiatric risk mediated by gene-environment interaction (GE), the prefrontal-hippocampal coupling is disrupted already shortly after birth. While this impairment relates to local miswiring in PFC and HP, it might be also because of abnormal connectivity between the two brain areas. Here, we test this hypothesis by combining in vivo electrophysiology and optogenetics with in-depth tracing of projections and monitor the morphology and function of hippocampal afferents in the PFC of control and GE mice of either sex throughout development. We show that projections from the hippocampal CA1 area preferentially target layer 5/6 pyramidal neurons and interneurons, and to a lesser extent layer 2/3 neurons of prelimbic cortex (PL), a subdivision of PFC. In neonatal GE mice, sparser axonal projections from CA1 pyramidal neurons with decreased release probability reach the PL. Their ability to entrain layer 5/6 oscillatory activity and firing is decreased. These structural and functional deficits of hippocampal-prelimbic connectivity persist, yet are less prominent in prejuvenile GE mice. Thus, besides local dysfunction of HP and PL, weaker connectivity between the two brain areas is present in GE mice throughout development.SIGNIFICANCE STATEMENT Poor cognitive performance in mental disorders comes along with prefrontal-hippocampal dysfunction. Recent data from mice that model the psychiatric risk mediated by gene-environment (GE) interaction identified the origin of deficits during early development, when the local circuits in both areas are compromised. Here, we show that sparser and less efficient connectivity as well as cellular dysfunction are the substrate of the weaker excitatory drive from hippocampus (HP) to prefrontal cortex (PFC) as well as of poorer oscillatory coupling between the two brain areas in these mice. While the structural and functional connectivity deficits persist during the entire development, their magnitude decreases with age. The results add experimental evidence for the developmental miswiring hypothesis of psychiatric disorders.


Assuntos
Interação Gene-Ambiente , Hipocampo/crescimento & desenvolvimento , Transtornos Mentais/genética , Transtornos Mentais/fisiopatologia , Rede Nervosa/crescimento & desenvolvimento , Córtex Pré-Frontal/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/química , Masculino , Transtornos Mentais/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/química , Córtex Pré-Frontal/química , Fatores de Risco
5.
Biol Chem ; 404(4): 241-254, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36809224

RESUMO

The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.


Assuntos
Canal de Potássio KCNQ1 , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Sítios de Ligação , Mutação , Membrana Celular/metabolismo
6.
PLoS Biol ; 17(1): e2006994, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30703080

RESUMO

Although the developmental principles of sensory and cognitive processing have been extensively investigated, their synergy has been largely neglected. During early life, most sensory systems are still largely immature. As a notable exception, the olfactory system is functional at birth, controlling mother-offspring interactions and neonatal survival. Here, we elucidate the structural and functional principles underlying the communication between olfactory bulb (OB) and lateral entorhinal cortex (LEC)-the gatekeeper of limbic circuitry-during neonatal development. Combining optogenetics, pharmacology, and electrophysiology in vivo with axonal tracing, we show that mitral cell-dependent discontinuous theta bursts in OB drive network oscillations and time the firing in LEC of anesthetized mice via axonal projections confined to upper cortical layers. Acute pharmacological silencing of OB activity diminishes entorhinal oscillations, whereas odor exposure boosts OB-entorhinal coupling at fast frequencies. Chronic impairment of olfactory sensory neurons disrupts OB-entorhinal activity. Thus, OB activity shapes the maturation of entorhinal circuits.


Assuntos
Bulbo Olfatório/fisiologia , Córtex Olfatório/fisiologia , Olfato/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Fenômenos Eletrofisiológicos/fisiologia , Córtex Entorrinal/metabolismo , Córtex Entorrinal/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Odorantes , Córtex Olfatório/metabolismo , Optogenética/métodos , Ritmo Teta/fisiologia
7.
Handb Exp Pharmacol ; 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36042142

RESUMO

The Chloride Channel (CLC) family includes proton-coupled chloride and fluoride transporters. Despite their similar protein architecture, the former exchange two chloride ions for each proton and are inhibited by fluoride, whereas the latter efficiently transport one fluoride in exchange for one proton. The combination of structural, mutagenesis, and functional experiments with molecular simulations has pinpointed several amino acid changes in the permeation pathway that capitalize on the different chemical properties of chloride and fluoride to fine-tune protein function. Here we summarize recent findings on fluoride inhibition and transport in the two prototypical members of the CLC family, the chloride/proton transporter from Escherichia coli (CLC-ec1) and the fluoride/proton transporter from Enterococcus casseliflavus (CLCF-eca).

8.
BMC Biol ; 19(1): 133, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34182994

RESUMO

BACKGROUND: For many animals, chemosensory cues are vital for social and defensive interactions and are primarily detected and processed by the vomeronasal system (VNS). These cues are often inherently associated with ethological meaning, leading to stereotyped behaviors. Thus, one would expect consistent representation of these stimuli across different individuals. However, individuals may express different arrays of vomeronasal sensory receptors and may vary in the pattern of connections between those receptors and projection neurons in the accessory olfactory bulb (AOB). In the first part of this study, we address the ability of individuals to form consistent representations despite these potential sources of variability. The second part of our study is motivated by the fact that the majority of research on VNS physiology involves the use of stimuli derived from inbred animals. Yet, it is unclear whether neuronal representations of inbred-derived stimuli are similar to those of more ethologically relevant wild-derived stimuli. RESULTS: First, we compared sensory representations to inbred, wild-derived, and wild urine stimuli in the AOBs of males from two distinct inbred strains, using them as proxies for individuals. We found a remarkable similarity in stimulus representations across the two strains. Next, we compared AOB neuronal responses to inbred, wild-derived, and wild stimuli, again using male inbred mice as subjects. Employing various measures of neuronal activity, we show that wild-derived and wild stimuli elicit responses that are broadly similar to those from inbred stimuli: they are not considerably stronger or weaker, they show similar levels of sexual dimorphism, and when examining population-level activity, cluster with inbred mouse stimuli. CONCLUSIONS: Despite strain-specific differences and apparently random connectivity, the AOB can maintain stereotypic sensory representations for broad stimulus categories, providing a substrate for common stereotypical behaviors. In addition, despite many generations of inbreeding, AOB representations capture the key ethological features (i.e., species and sex) of wild-derived and wild counterparts. Beyond these broad similarities, representations of stimuli from wild mice are nevertheless distinct from those elicited by inbred mouse stimuli, suggesting that laboratory inbreeding has indeed resulted in marked modifications of urinary secretions.


Assuntos
Bulbo Olfatório , Animais , Sinais (Psicologia) , Masculino , Camundongos , Células Receptoras Sensoriais , Olfato , Comportamento Estereotipado , Órgão Vomeronasal
9.
J Neurosci ; 40(21): 4203-4218, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312886

RESUMO

The accessory olfactory system controls social and sexual behavior. In the mouse accessory olfactory bulb, the first central stage of information processing along the accessory olfactory pathway, projection neurons (mitral cells) display infra-slow oscillatory discharge with remarkable periodicity. The physiological mechanisms that underlie this default output state, however, remain controversial. Moreover, whether such rhythmic infra-slow activity patterns exist in awake behaving mice and whether such activity reflects the functional organization of the accessory olfactory bulb circuitry remain unclear. Here, we hypothesize that mitral cell ensembles form synchronized microcircuits that subdivide the accessory olfactory bulb into segregated functional clusters. We use a miniature microscope to image the Ca2+ dynamics within the apical dendritic compartments of large mitral cell ensembles in vivo We show that infra-slow periodic patterns of concerted neural activity, indeed, reflect the idle state of accessory olfactory bulb output in awake male and female mice. Ca2+ activity profiles are distinct and glomerulus-specific. Confocal time-lapse imaging in acute slices reveals that groups of mitral cells assemble into microcircuits that exhibit correlated Ca2+ signals. Moreover, electrophysiological profiling of synaptic connectivity indicates functional coupling between mitral cells. Our results suggest that both intrinsically rhythmogenic neurons and neurons entrained by fast synaptic drive are key elements in organizing the accessory olfactory bulb into functional microcircuits, each characterized by a distinct default pattern of infra-slow rhythmicity.SIGNIFICANCE STATEMENT Information processing in the accessory olfactory bulb (AOB) plays a central role in conspecific chemosensory communication. Surprisingly, many basic physiological principles that underlie neuronal signaling in the AOB remain elusive. Here, we show that AOB projection neurons (mitral cells) form parallel synchronized ensembles both in vitro and in vivo Infra-slow synchronous oscillatory activity within AOB microcircuits thus adds a new dimension to chemosensory coding along the accessory olfactory pathway.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos
10.
Mol Hum Reprod ; 27(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33993290

RESUMO

Extracellular ATP has been described to be involved in inflammatory cytokine production by human testicular peritubular cells (HTPCs). The ectonucleotidases ENTPD1 and NT5E degrade ATP and have been reported in rodent testicular peritubular cells. We hypothesized that if a similar situation exists in human testis, ATP metabolites may contribute to cytokine production. Indeed, ENTPD1 and NT5E were found in situ and in vitro in HTPCs. Malachite green assays confirmed enzyme activities in HTPCs. Pharmacological inhibition of ENTPD1 (by POM-1) significantly reduced pro-inflammatory cytokines evoked by ATP treatment, suggesting that metabolites of ATP, including adenosine, are likely involved. We focused on adenosine and detected three of the four known adenosine receptors in HTPCs. One, A2B, was also found in situ in peritubular cells of human testicular sections. The A2B agonist BAY60-6583 significantly elevated levels of IL6 and CXCL8, a result also obtained with adenosine and its analogue NECA. Results of siRNA-mediated A2B down-regulation support a role of this receptor. In mouse peritubular cells, in contrast to HTPCs, all four of the known adenosine receptors were detected; when challenged with adenosine, cytokine expression levels significantly increased. Organotypic short-term testis cultures yielded comparable results and indicate an overall pro-inflammatory action of adenosine in the mouse testis. If transferable to the in vivo situation, our results may implicate that interference with the generation of ATP metabolites or interference with adenosine receptors could reduce inflammatory events in the testis. These novel insights may provide new avenues for treatment of sterile inflammation in male subfertility and infertility.


Assuntos
Adenosina/fisiologia , Testículo/metabolismo , 5'-Nucleotidase/metabolismo , Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Adulto , Aminopiridinas/farmacologia , Animais , Apirase/antagonistas & inibidores , Apirase/fisiologia , Células Cultivadas , Citocinas/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/terapia , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Receptor A2B de Adenosina/fisiologia , Receptores Purinérgicos P1/análise , Receptores Purinérgicos P1/metabolismo , Testículo/citologia
11.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670788

RESUMO

Epigenetic mechanisms are emerging key players for the regulation of brain function, synaptic activity, and the formation of neuronal engrams in health and disease. As one important epigenetic mechanism of transcriptional control, DNA methylation was reported to distinctively modulate synaptic activity in excitatory and inhibitory cortical neurons in mice. Since DNA methylation signatures are responsive to neuronal activity, DNA methylation seems to contribute to the neuron's capacity to adapt to and integrate changing activity patterns, being crucial for the plasticity and functionality of neuronal circuits. Since most studies addressing the role of DNA methylation in the regulation of synaptic function were conducted in mice or murine neurons, we here asked whether this functional implication applies to human neurons as well. To this end, we performed calcium imaging in human induced pluripotent stem cell (iPSC)-derived excitatory cortical neurons forming synaptic contacts and neuronal networks in vitro. Treatment with DNMT1 siRNA that diminishs the expression of the DNA (cytosine-5)-methyltransferase 1 (DNMT1) was conducted to investigate the functional relevance of DNMT1 as one of the main enzymes executing DNA methylations in the context of neuronal activity modulation. We observed a lowered proportion of actively firing neurons upon DNMT1-knockdown in these iPSC-derived excitatory neurons, pointing to a correlation of DNMT1-activity and synaptic transmission. Thus, our experiments suggest that DNMT1 decreases synaptic activity of human glutamatergic neurons and underline the relevance of epigenetic regulation of synaptic function also in human excitatory neurons.


Assuntos
Córtex Cerebral/citologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Glutamatos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/enzimologia , Animais , Sinalização do Cálcio , Diferenciação Celular , Humanos , Camundongos
12.
J Physiol ; 598(24): 5753-5769, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926437

RESUMO

KEY POINTS: During early postnatal development, mitral cells show either irregular bursting or non-bursting firing patterns Bursting mitral cells preferentially fire during theta bursts in the neonatal olfactory bulb, being locked to the theta phase Bursting mitral cells preferentially fire during theta bursts in the neonatal lateral entorhinal cortex and are temporally related to both respiration rhythm- and theta phase Bursting mitral cells act as a cellular substrate of the olfactory drive that promotes the oscillatory entrainment of entorhinal networks ABSTRACT: Shortly after birth, the olfactory system provides not only the main source of environmental inputs to blind, deaf, non-whisking and motorically-limited rodents, but also the drive boosting the functional entrainment of limbic circuits. However, the cellular substrate of this early communication remains largely unknown. Here, we combine in vivo and in vitro patch-clamp and extracellular recordings to reveal the contribution of mitral cell (MC) firing to early patterns of network activity in both the neonatal olfactory bulb (OB) and the lateral entorhinal cortex (LEC), the gatekeeper of limbic circuits. We show that MCs predominantly fire either in an irregular bursting or non-bursting pattern during discontinuous theta events in the OB. However, the temporal spike-theta phase coupling is stronger for bursting than non-bursting MCs. In line with the direct OB-to-LEC projections, both bursting and non-bursting discharge augments during co-ordinated patterns of entorhinal activity, albeit with higher magnitude for bursting MCs. For these neurons, temporal coupling to the discontinuous theta events in the LEC is stronger. Thus, bursting MCs might drive the entrainment of the OB-LEC network during neonatal development.


Assuntos
Bulbo Olfatório , Olfato , Potenciais de Ação , Animais , Animais Recém-Nascidos , Córtex Entorrinal , Camundongos
13.
Biomacromolecules ; 21(11): 4532-4544, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32459469

RESUMO

The unique pH and temperature responsiveness of PNIPAM-based microgels make them a promising target for novel biomedical applications such as cellular drug delivery systems. However, we lack a comprehensive understanding of how the physicochemical properties of microgels relate to their interaction with cells. Here, we show that HEK293T cells take up PNIPAM-based microgels on a second-to-minute time scale. Uptake rates are determined by microgel size and cross-linker content. Using fluorescence confocal live-cell microscopy, we observe microgel uptake in real time and describe cellular uptake kinetics. Experiments reveal that small and less cross-linked microgels show faster uptake kinetics than microgels of larger size or higher cross-linker content. Only microgels that are larger than 800 nm in diameter and have cross-linking contents of 10-15 mol % do not show translocation into cells. Together, these results provide insight into microgel-cell interactions and generate quantitative information on the deterministic role of microgel architecture-i.e., size and rigidity-for uptake by a prototypical human cell line.


Assuntos
Microgéis , Géis , Células HEK293 , Humanos , Cinética , Temperatura
14.
Kidney Int ; 96(2): 505-516, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31155155

RESUMO

Recent developments in optical tissue clearing have been difficult to apply for the morphometric analysis of organs with high cellular content and small functional structures, such as the kidney. Here, we establish combinations of genetic and immuno-labelling for single cell identification, tissue clearing and subsequent de-clarification for histoimmunopathology and transmission electron microscopy. Using advanced light microscopy and computational analyses, we investigated a murine model of crescentic nephritis, an inflammatory kidney disease typified by immune-mediated damage to glomeruli leading to the formation of hypercellular lesions and the rapid loss of kidney function induced by nephrotoxic serum. Results show a graded susceptibility of the glomeruli, significant podocyte loss and capillary injury. These effects are associated with activation of parietal epithelial cells and formation of glomerular lesions that may evolve and obstruct the kidney tubule, thereby explaining the loss of kidney function. Thus, our work provides new high-throughput endpoints for the analysis of complex tissues with single-cell resolution.


Assuntos
Glomerulonefrite/patologia , Técnicas de Preparação Histocitológica/métodos , Imageamento Tridimensional , Podócitos/fisiologia , Análise de Célula Única/métodos , Animais , Capilares , Modelos Animais de Doenças , Progressão da Doença , Fluorescência , Corantes Fluorescentes/química , Genes Reporter/genética , Glomerulonefrite/imunologia , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Podócitos/ultraestrutura
15.
Nature ; 502(7471): 368-71, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24089208

RESUMO

Animals display a repertoire of different social behaviours. Appropriate behavioural responses depend on sensory input received during social interactions. In mice, social behaviour is driven by pheromones, chemical signals that encode information related to age, sex and physiological state. However, although mice show different social behaviours towards adults, juveniles and neonates, sensory cues that enable specific recognition of juvenile mice are unknown. Here we describe a juvenile pheromone produced by young mice before puberty, termed exocrine-gland secreting peptide 22 (ESP22). ESP22 is secreted from the lacrimal gland and released into tears of 2- to 3-week-old mice. Upon detection, ESP22 activates high-affinity sensory neurons in the vomeronasal organ, and downstream limbic neurons in the medial amygdala. Recombinant ESP22, painted on mice, exerts a powerful inhibitory effect on adult male mating behaviour, which is abolished in knockout mice lacking TRPC2, a key signalling component of the vomeronasal organ. Furthermore, knockout of TRPC2 or loss of ESP22 production results in increased sexual behaviour of adult males towards juveniles, and sexual responses towards ESP22-deficient juveniles are suppressed by ESP22 painting. Thus, we describe a pheromone of sexually immature mice that controls an innate social behaviour, a response pathway through the accessory olfactory system and a new role for vomeronasal organ signalling in inhibiting sexual behaviour towards young. These findings provide a molecular framework for understanding how a sensory system can regulate behaviour.


Assuntos
Feromônios/metabolismo , Comportamento Sexual Animal , Maturidade Sexual , Órgão Vomeronasal/metabolismo , Envelhecimento , Tonsila do Cerebelo/citologia , Animais , Feminino , Aparelho Lacrimal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Feromônios/farmacologia , Células Receptoras Sensoriais/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos , Canais de Cátion TRPC/deficiência , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Lágrimas/metabolismo , Órgão Vomeronasal/citologia
16.
Beilstein J Org Chem ; 15: 811-817, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30992730

RESUMO

In recent times, many biologically relevant building blocks such as amino acids, peptides, saccharides, nucleotides and nucleosides, etc. have been prepared by mechanochemical synthesis. However, mechanosynthesis of lipids by ball milling techniques has remained essentially unexplored. In this work, a multistep synthetic route to access mono- and diacylglycerol derivatives by mechanochemistry has been realized, including the synthesis of diacylglycerol-coumarin conjugates.

17.
Chem Senses ; 43(9): 667-695, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30256909

RESUMO

In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.


Assuntos
Bulbo Olfatório/fisiologia , Transdução de Sinais , Órgão Vomeronasal/fisiologia , Animais , Axônios , Camundongos , Neurônios/fisiologia , Feromônios/fisiologia , Receptores de Feromônios/fisiologia , Olfato/fisiologia , Órgão Vomeronasal/citologia
18.
J Neurosci ; 36(11): 3127-44, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26985025

RESUMO

The accessory olfactory system controls social and sexual behavior. However, key aspects of sensory signaling along the accessory olfactory pathway remain largely unknown. Here, we investigate patterns of spontaneous neuronal activity in mouse accessory olfactory bulb mitral cells, the direct neural link between vomeronasal sensory input and limbic output. Both in vitro and in vivo, we identify a subpopulation of mitral cells that exhibit slow stereotypical rhythmic discharge. In intrinsically rhythmogenic neurons, these periodic activity patterns are maintained in absence of fast synaptic drive. The physiological mechanism underlying mitral cell autorhythmicity involves cyclic activation of three interdependent ionic conductances: subthreshold persistent Na(+) current, R-type Ca(2+) current, and Ca(2+)-activated big conductance K(+) current. Together, the interplay of these distinct conductances triggers infraslow intrinsic oscillations with remarkable periodicity, a default output state likely to affect sensory processing in limbic circuits. SIGNIFICANCE STATEMENT: We show for the first time that some rodent accessory olfactory bulb mitral cells-the direct link between vomeronasal sensory input and limbic output-are intrinsically rhythmogenic. Driven by ≥ 3 distinct interdependent ionic conductances, infraslow intrinsic oscillations show remarkable periodicity both in vitro and in vivo. As a novel default state, infraslow autorhythmicity is likely to affect limbic processing of pheromonal information.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/citologia , Condutos Olfatórios/fisiologia , Periodicidade , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Fármacos Cardiovasculares/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fosfolipases A2 do Grupo II , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Neurônios/classificação , Neurônios/efeitos dos fármacos , Pirimidinas/farmacologia , Venenos de Aranha/farmacologia , Valina/análogos & derivados , Valina/farmacologia , ômega-Agatoxina IVA/farmacologia
19.
BMC Bioinformatics ; 18(1): 272, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545524

RESUMO

BACKGROUND: In neuroscience research, mouse models are valuable tools to understand the genetic mechanisms that advance evidence-based discovery. In this context, large-scale studies emphasize the need for automated high-throughput systems providing a reproducible behavioral assessment of mutant mice with only a minimum level of manual intervention. Basic element of such systems is a robust tracking algorithm. However, common tracking algorithms are either limited by too specific model assumptions or have to be trained in an elaborate preprocessing step, which drastically limits their applicability for behavioral analysis. RESULTS: We present an unsupervised learning procedure that is basically built as a two-stage process to track mice in an enclosed area using shape matching and deformable segmentation models. The system is validated by comparing the tracking results with previously manually labeled landmarks in three setups with different environment, contrast and lighting conditions. Furthermore, we demonstrate that the system is able to automatically detect non-social and social behavior of interacting mice. The system demonstrates a high level of tracking accuracy and clearly outperforms the MiceProfiler, a recently proposed tracking software, which serves as benchmark for our experiments. CONCLUSIONS: The proposed method shows promising potential to automate behavioral screening of mice and other animals. Therefore, it could substantially increase the experimental throughput in behavioral assessment automation.


Assuntos
Comportamento Animal/fisiologia , Aprendizado de Máquina não Supervisionado , Algoritmos , Animais , Processamento Eletrônico de Dados , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Comportamento Social
20.
Chem Senses ; 42(1): 25-35, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27655939

RESUMO

In most mammals, the vomeronasal system detects a variety of (semio)chemicals that mediate olfactory-driven social and sexual behaviors. Vomeronasal chemosensation depends on G protein-coupled receptors (V1R, V2R, and FPR-rs) that operate at remarkably low stimulus concentrations, thus, indicating a highly sensitive and efficient signaling pathway. We identified the PDZ domain-containing protein, Na+/H+ exchanger regulatory factor-1 (NHERF1), as putative molecular organizer of signal transduction in vomeronasal neurons. NHERF1 is a protein that contains 2 PDZ domains and a carboxy-terminal ezrin-binding domain. It localizes to microvilli of vomeronasal sensory neurons and interacts with V1Rs. Furthermore, NHERF1 and Gαi2 are closely colocalized. These findings open up new aspects of the functional organization and regulation of vomeronasal signal transduction by PDZ scaffolding proteins.


Assuntos
Microvilosidades/química , Fosfoproteínas/análise , Células Receptoras Sensoriais/química , Trocadores de Sódio-Hidrogênio/análise , Órgão Vomeronasal/citologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microvilosidades/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Células Receptoras Sensoriais/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA