RESUMO
In the face of a challenging climate STEM (Science, Technology, Engineering and Mathematics) higher education that is resistant to Diversity, Equity, and Inclusion efforts aimed to increase and retain students from historically excluded groups (HEGs), there is a critical need for a support structure to ensure students from HEGs continue to be recruited retained. The Biology Undergraduate and Master's Mentorship Program (BUMMP) embodies this commitment to fostering scientific identity, efficacy, and a sense of belonging for first-generation and historically underserved undergraduate and master's students at UC San Diego. The mission of BUMMP is to cultivate a sense of belonging, instill confidence, and nurture a strong scientific identity amongst all its participants. At its core, the three pillars of BUMMP are (1) mentorship, (2) professional development, and (3) research. Quality mentorship is provided where students receive personal guidance from faculty, graduate students, postdocs, and industry leaders in navigating their career pathways. Complementing mentorship, BUMMP provides paid research opportunities and prioritizes professional development by offering workshops designed to enhance students' professional skills. These three pillars form the backbone of BUMMP, empowering students from all backgrounds and ensuring their retention and persistence in STEM. So far, we've served over 1350 mentees, collaborated with 809 mentors, and had over 180 mentees actively engaged in BUMMP-sponsored research activities. The primary focus of this paper is to provide a programmatic guideline for the three pillars of BUMMP: mentorship, professional development, and research. This will offer a blueprint for other institutions to establish similar mentorship programs. Additionally, the paper highlights the impact of the BUMMP program and surveyed mentees who have participated in the mentorship and research component of BUMMP. We showed that mentorship and research experience enhance students' sense of belonging, science identity, and science efficacy, which are key predictors of retention and persistence in pursuing a STEM career. Overall, BUMMP's expansive efforts have made a tremendous impact at UC San Diego and will continue to foster a community of future leaders who will be prepared to make meaningful contributions to the scientific community and beyond.
Assuntos
Engenharia , Mentores , Estudantes , Humanos , Estudantes/psicologia , Engenharia/educação , Universidades , Tecnologia/educação , Ciência/educação , Empoderamento , Matemática/educação , Tutoria/métodosRESUMO
Diverse populations of bacteriophages infect and coevolve with their bacterial hosts. Although host recognition and infection occur within microbiomes, the molecular mechanisms underlying host-phage interactions within a community context remain poorly studied. The biofilms (rinds) of aged cheeses contain taxonomically diverse microbial communities that follow reproducible growth patterns and can be manipulated under laboratory conditions. In this study, we use cheese as a model for studying phage-microbe interactions by identifying and characterizing a tractable host-phage pair co-occurring within a model Brie-like community. We isolated a novel bacteriophage, TS33, that kills Hafnia sp. JB232, a member of the model community. TS33 is easily propagated in the lab and naturally co-occurs in the cheese community, rendering it a prime candidate for the study of host-phage interactions. We performed growth assays of the Hafnia, TS33, and the fungal community members, Geotrichum candidum and Penicillium camemberti. Employing Random Barcode Transposon Sequencing experiments, we identified candidate host factors that contribute to TS33 infectivity, many of which are homologs of bacterial O-antigen genes. Hafnia mutants in these genes exhibit decreased susceptibility to phage infection, but experience negative fitness effects in the presence of the fungi. Therefore, mutations in O-antigen biosynthesis homologs may have antagonistic pleiotropic effects in Hafnia that have major consequences for its interactions with the rest of the community. Ongoing and future studies aim to unearth the molecular mechanisms by which the O-antigen of Hafnia mediates its interactions with its viral and fungal partners.