Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cladistics ; 40(2): 181-191, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37824277

RESUMO

Informative and consistent taxonomy above the species level is essential to communication about evolution, biodiversity and conservation, and yet the practice of taxonomy is considered opaque and subjective by non-taxonomist scientists and the public alike. While various proposals have tried to make the basis for the ranking and inclusiveness of taxa more transparent and objective, widespread adoption of these ideas has lagged. Here, we present TaxonomR, an interactive online decision-support tool to evaluate alternative taxonomic classifications. This tool implements an approach that quantifies the criteria commonly used in taxonomic treatments and allows the user to interactively manipulate weightings for different criteria to compare scores for taxonomic groupings under those weights. We use the butterfly taxon Argynnis to demonstrate how different weightings applied to common taxonomic criteria result in fundamentally different genus-level classifications that are predominantly used in different continents and geographic regions. These differences are objectively compared and quantified using TaxonomR to evaluate the kinds of criteria that have been emphasized in earlier classifications, and the nature of the support for current alternative taxonomic arrangements. The main role of TaxonomR is to make taxonomic decisions transparent via an explicit prioritization scheme. TaxonomR is not a prescriptive application. Rather, it aims to be a tool for facilitating our understanding of alternative taxonomic classifications that can, in turn, potentially support global harmony in biodiversity assessments through evidence-based discussion and community-wide resolution of historically entrenched taxonomic tensions.


Assuntos
Biodiversidade , Filogenia
2.
Mol Phylogenet Evol ; 183: 107758, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907224

RESUMO

The swallowtail genus Papilio (Lepidoptera: Papilionidae) is species rich, distributed worldwide, and has broad morphological habits and ecological niches. Because of its elevated species richness, it has been historically difficult to reconstruct a densely sampled phylogeny for this clade. Here we provide a taxonomic working list for the genus, resulting in 235 Papilio species, and assemble a molecular dataset of seven gene fragments representing ca. 80% of the currently described diversity. Phylogenetic analyses reconstructed a robust tree with highly supported relationships within subgenera, although a few nodes in the early history of the Old World Papilio remain unresolved. Contrasting with previous results, we found that Papilio alexanor is sister to all Old World Papilio and that the subgenus Eleppone is no longer monotypic. The latter includes the recently described Fijian Papilio natewa with the Australian Papilio anactus and is sister to subgenus Araminta (formerly included in subgenus Menelaides) occurring in Southeast Asia. Our phylogeny also includes rarely studied (P. antimachus, P. benguetana) or endangered species (P. buddha, P. chikae). Taxonomic changes resulting from this study are elucidated. Molecular dating and biogeographic analyses indicate that Papilio originated ca. 30 million years ago (Oligocene), in a northern region centered on Beringia. A rapid early Miocene radiation in the Paleotropics is revealed within Old World Papilio, potentially explaining their low early branch support. Most subgenera originated in the early to middle Miocene followed by synchronous southward biogeographic dispersals and repeated local extirpations in northern latitudes. This study provides a comprehensive phylogenetic framework for Papilio with clarification of subgeneric systematics and species taxonomic changes enumerated, which will facilitate further studies to address questions on their ecology and evolutionary biology using this model clade.


Assuntos
Borboletas , Animais , Filogenia , Austrália , Borboletas/genética , Evolução Biológica , Sudeste Asiático
3.
Mol Ecol ; 31(8): 2400-2417, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35212068

RESUMO

Recent advances in both genomics and ecological modelling present new, multidisciplinary opportunities for resolving species boundaries and understanding the mechanisms that maintain their integrity in regions of contact. Here, we use a combination of high-throughput DNA sequencing and ecological niche modelling to resolve species boundaries and niche divergence within the Speyeria atlantis-hesperis (Lepidoptera: Nymphalidae) complex, a confusing group of North American butterflies. This complex is notorious for its muddled species delimitations, morphological ambiguity, and extensive mitonuclear discordance. Our admixture and multispecies coalescent-based analyses of single nucleotide polymorphisms identified substantial divergences between S. atlantis and S. hesperis in areas of contact, as well as between distinct northern and southern lineages within S. hesperis. Our results also provide evidence of past introgression relating to another species, S. zerene, which previous work has shown to be more distantly related to the S. atlantis-hesperis complex. We then used ecological models to predict habitat suitability for each of the three recovered genomic lineages in the S. atlantis-hesperis complex and assessed their pairwise niche divergence. These analyses resolved that these three lineages are significantly diverged in their respective niches and are not separated by discontinuities in suitable habitat that might present barriers to gene flow. We therefore infer that ecologically-mediated selection resulting in disparate habitat associations is a principal mechanism reinforcing their genomic integrity. Overall, our results unambiguously support significant evolutionary and ecological divergence between the northern and southern lineages of S. hesperis, sufficient to recognize the southern evolutionary lineage as a distinct species, called S. nausicaa based on taxonomic priority.


Assuntos
Borboletas , Animais , Evolução Biológica , Borboletas/genética , Ecossistema , Fluxo Gênico , Genômica , Filogenia
4.
Mol Phylogenet Evol ; 171: 107465, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35351633

RESUMO

Divergence times underpin diverse evolutionary hypotheses, but conflicting age estimates across studies diminish the validity of such hypotheses. These conflicts have continued to grow as large genomics datasets become commonplace and analytical approaches proliferate. To provide more stable temporal intervals, age estimations should be interpreted in the context of both the type of data and analysis being used. Here, we use multispecies coalescent (MSC), concatenation-based, and categorical data transformation approaches on genome-wide SNP data to infer divergence ages within the Papilio glaucus group of tiger swallowtail butterflies in North America. While the SNP data supported previously recognized relationships within the group (P. multicaudata, ((P. eurymedon, P. rutulus), (P. appalachiensis, P. canadensis, P. glaucus))), estimated ages of divergence between the major lineages varied substantially among analyses. MSC produced wide credibility intervals particularly for deeper nodes, reflecting uncertainty in the coalescence times as a possible result of conflicting signal across gene trees. Concatenation, in contrast, gave narrower and more well-defined posterior distributions for the node ages; however, the higher precision of these time estimates is a likely artefact due to more simplistic underlying assumptions of this approach that do not account for conflict among gene trees. Transformed categorical data analysis gave the least precise and the most variable results, with its simple substitution model coupled with a relaxed clock tending to produce spurious results from large genome-wide datasets. While median node ages differed considerably between analyses (∼2 Mya between MSC and concatenation-based results), their corresponding credibility intervals nonetheless highlight common temporal patterns for deeper divergences in the group as well as finer-scale phylogeography. Age distributions across analyses support an origin of the group during the warm period of the early to mid-Pliocene. Late Pliocene climate aridification and cooling drove divergence between eastern and western groups that further diversified during the period of repeated Pleistocene glaciations. Our results provide a structured comparative assessment of divergence time estimates and evolutionary relationships in a well-studied group of butterflies, and support better understanding of analytical biases in divergence time estimation.


Assuntos
Borboletas , Animais , Evolução Biológica , Borboletas/genética , Genoma , Filogenia , Filogeografia
5.
Mol Ecol ; 29(20): 3889-3906, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32810893

RESUMO

Previous work in landscape genetics suggests that geographic isolation is of greater importance to genetic divergence than variation in environmental conditions. This is intuitive when configurations of suitable habitat are a dominant factor limiting dispersal and gene flow, but has not been thoroughly examined for habitat specialists with strong dispersal capability. Here, we evaluate the effects of geographic and environmental isolation on genetic divergence for a vagile invertebrate with high habitat specificity and a discrete dispersal life stage: Dod's Old World swallowtail butterfly, Papilio machaon dodi. In Canada, P. m. dodi are generally restricted to eroding habitat along major river valleys where their larval host plant occurs. A series of causal and linear mixed effects models indicate that divergence of genome-wide single nucleotide polymorphisms is best explained by a combination of environmental isolation (variation in summer temperatures) and geographic isolation (Euclidean distance). Interestingly, least-cost path and circuit distances through a resistance surface parameterized as the inverse of habitat suitability were not supported. This suggests that, although habitat associations of many butterflies are specific due to reproductive requirements, habitat suitability and landscape permeability are not equivalent concepts due to considerable adult vagility. We infer that divergent selection related to variation in summer temperatures has produced two genetic clusters within P. m. dodi, differing in voltinism and diapause propensity. Within the next century, temperatures are predicted to rise by amounts greater than the present-day difference between regions of the genetic clusters, potentially affecting the persistence of the northern cluster under continued climate change.


Assuntos
Borboletas , Fluxo Gênico , Animais , Borboletas/genética , Canadá , Ecossistema , Variação Genética , Especialização
6.
Mol Phylogenet Evol ; 152: 106921, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32758535

RESUMO

Genomics has revolutionized our understanding of hybridization and introgression, but most of the early evidence for these processes came from studies of mitochondrial introgression. To expand these evolutionary insights from mitochondrial patterns, we evaluate phylogenetic discordance across the nuclear genomes of a hybridizing system, the Papilio machaon group of swallowtail butterflies. This species group contains three hybrid lineages (P. brevicauda, P. joanae, and P. m. kahli) that are geographically disjunct across North America and have complete fixation of a mitochondrial lineage that is otherwise primarily found in P. m. hudsonianus, a boreal subspecies of the Holarctic P. machaon. Genome-wide nuclear markers place the three hybrid lineages as a monophyletic group that is sister to P. polyxenes/P. zelicaon rather than P. machaon, although ancient hybridization between a subspecies of P. machaon and the ancestor of these three lineages is also shown by their greater nuclear affinity to P. m. hudsonianus than to other subspecies of P. machaon. Individuals from contemporary hybrid swarms in Alberta, where mitochondrial DNA fixation has not occurred, were more intermediate between their respective parent species, demonstrating diversity in mito-nuclear discordance following hybrid interactions. Our new phylogenetic findings for the P. machaon species group also include: subspecific paraphyly within P. machaon itself across its Holarctic distribution; paraphyly of P. zelicaon relative to P. polyxenes; and more divergent placement of a Mediterranean species, P. hospiton. These results provide the first comprehensive genomic evaluation of relationships within this species group and provide insight into the evolutionary dynamics of hybridization and mitochondrial introgression.


Assuntos
Borboletas/classificação , Borboletas/genética , Mitocôndrias/genética , Filogenia , Animais , Evolução Biológica , DNA Mitocondrial/genética , Genoma de Inseto/genética , Hibridização Genética , América do Norte , Hibridização de Ácido Nucleico
7.
Syst Biol ; 67(6): 940-964, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438538

RESUMO

In macroevolution, the Red Queen (RQ) model posits that biodiversity dynamics depend mainly on species-intrinsic biotic factors such as interactions among species or life-history traits, while the Court Jester (CJ) model states that extrinsic environmental abiotic factors have a stronger role. Until recently, a lack of relevant methodological approaches has prevented the unraveling of contributions from these 2 types of factors to the evolutionary history of a lineage. Herein, we take advantage of the rapid development of new macroevolution models that tie diversification rates to changes in paleoenvironmental (extrinsic) and/or biotic (intrinsic) factors. We inferred a robust and fully-sampled species-level phylogeny, as well as divergence times and ancestral geographic ranges, and related these to the radiation of Apollo butterflies (Parnassiinae) using both extant (molecular) and extinct (fossil/morphological) evidence. We tested whether their diversification dynamics are better explained by an RQ or CJ hypothesis, by assessing whether speciation and extinction were mediated by diversity-dependence (niche filling) and clade-dependent host-plant association (RQ) or by large-scale continuous changes in extrinsic factors such as climate or geology (CJ). For the RQ hypothesis, we found significant differences in speciation rates associated with different host-plants but detected no sign of diversity-dependence. For CJ, the role of Himalayan-Tibetan building was substantial for biogeography but not a driver of high speciation, while positive dependence between warm climate and speciation/extinction was supported by continuously varying maximum-likelihood models. We find that rather than a single factor, the joint effect of multiple factors (biogeography, species traits, environmental drivers, and mass extinction) is responsible for current diversity patterns and that the same factor might act differently across clades, emphasizing the notion of opportunity. This study confirms the importance of the confluence of several factors rather than single explanations in modeling diversification within lineages.


Assuntos
Evolução Biológica , Borboletas/classificação , Modelos Biológicos , Animais , Biodiversidade , Borboletas/genética , Especiação Genética , Filogenia
8.
Mol Phylogenet Evol ; 123: 35-43, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29378247

RESUMO

Mitogenomes are useful markers for phylogenetic studies across a range of taxonomic levels. Here, we focus on mitogenome variation across the tortricid moth genus Choristoneura and particularly the spruce budworm (Choristoneura fumiferana) species complex, a notorious pest group of North American conifer forests. Phylogenetic relationships of Tortricidae, representing two subfamilies, four tribes and nine genera, were analyzed using 21 mitogenomes. These included six newly-sequenced mitogenomes for species in the spruce budworm complex plus three additional Choristoneura species and 12 previously published mitogenomes from other tortricids and one from the Cossidae. We evaluated the phylogenetic informativeness of the mitogenomes and reconstructed a time-calibrated tree with fossil and secondary calibrations. We found that tortricid mitogenomes had conserved protein and ribosomal regions, and analysis of all protein-coding plus ribosomal genes together provided an efficient marker at any taxonomic rank. The time-calibrated phylogeny showed evolutionary convergence of conifer feeding within Choristoneura, with two independent lineages, the Nearctic spruce budworm complex and the Palearctic species Choristoneura murinana, both shifting onto conifers about 11 million years ago from angiosperms. These two host-plant shifts both occurred after the formation of boreal forest in the late Miocene. Haplotype diversification within the spruce budworm complex occurred in the last 4 million years, and is probably linked to the initial cooling cycles of the Northern Hemisphere in the Pliocene.


Assuntos
Herbivoria/fisiologia , Mariposas/fisiologia , Taiga , Traqueófitas/parasitologia , Animais , Sequência de Bases , Calibragem , DNA Mitocondrial/genética , Genoma Mitocondrial , Mariposas/genética , Filogenia , Fatores de Tempo
9.
J Fish Biol ; 93(6): 1216-1228, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30367487

RESUMO

Shads of the genus Alosa are essential to commercial fisheries across North America and Europe, but in some areas their species boundaries remain controversial. Traditional morphology-based taxonomy of Alosa spp. has relied heavily on the number of gill rakers and body proportions, but these can be highly variable. We use mitochondrial (mt)DNA (coI and cytb) and genome-wide single nucleotide polymorphisms (SNP) along with morphological characters to assess differentiation among endemic Ponto-Caspian shads in the Sea of Azov. Morphological species assignments based on gill-raker number were not congruent with genetic lineages shown by mtDNA and SNPs. Iterative analysis revealed that genetic lineages were associated with sampling location and several other morphometric traits (caudal peduncle depth, pre-anal length and head length). Phylogenetic analysis of the genus placed Ponto-Caspian Alosa spp. in the same evolutionary lineage as endangered Alosa spp. endemic to Greece, highlighting the importance of these findings to conservation management. We conclude that gill-raker number is not reliable for delimiting species of Alosa. This taxonomic uncertainty should be addressed by examining type material to provide a robust integrative classification for these commercially important fishes.


Assuntos
Peixes/genética , Animais , Evolução Biológica , Tamanho Corporal , Citocromos b/química , Citocromos b/genética , DNA Mitocondrial/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Peixes/anatomia & histologia , Peixes/classificação , Brânquias , Filogeografia , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
10.
Mol Ecol ; 26(23): 6666-6684, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29055150

RESUMO

Populations are often exposed to multiple sources of gene flow, but accounts are lacking of the population genetic dynamics that result from these interactions or their effects on local evolution. Using a genomic clines framework applied to 1,195 single nucleotide polymorphisms, we documented genomewide, locus-specific patterns of introgression between Choristoneura occidentalis biennis spruce budworms and two ecologically divergent relatives, C. o. occidentalis and Choristoneura fumiferana, that it interacts with at alternate boundaries of its range. We observe contrasting hybrid indexes between the two hybrid zones, no overlap in "gene-flow outliers" (clines showing relatively extreme extents or rates of locus-specific introgression) and variable linkage disequilibrium among those outliers. At the same time, correlated genomewide rates of introgression between zones suggest the presence of processes common to both boundaries. These findings highlight the contrasting population genetic dynamics that can occur at separate frontiers of a single population, while also suggesting that shared patterns may frequently accompany cases of divergence-with-gene-flow that involve a lineage in common. Our results point to potentially complex evolutionary outcomes for populations experiencing multiple sources of gene flow.


Assuntos
Fluxo Gênico , Genética Populacional , Hibridização Genética , Lepidópteros/classificação , Alberta , Animais , Colúmbia Britânica , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional , Saskatchewan
11.
Mol Ecol ; 26(7): 2077-2091, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28231417

RESUMO

Bark beetles form multipartite symbiotic associations with blue stain fungi (Ophiostomatales, Ascomycota). These fungal symbionts play an important role during the beetle's life cycle by providing nutritional supplementation, overcoming tree defences and modifying host tissues to favour brood development. The maintenance of stable multipartite symbioses with seemingly less competitive symbionts in similar habitats is of fundamental interest to ecology and evolution. We tested the hypothesis that the coexistence of three fungal species associated with the mountain pine beetle is the result of niche partitioning and adaptive radiation using SNP genotyping coupled with genotype-environment association analysis and phenotypic characterization of growth rate under different temperatures. We found that genetic variation and population structure within each species is best explained by distinct spatial and environmental variables. We observed both common (temperature seasonality and the host species) and distinct (drought, cold stress, precipitation) environmental and spatial factors that shaped the genomes of these fungi resulting in contrasting outcomes. Phenotypic intraspecific variations in Grosmannia clavigera and Leptographium longiclavatum, together with high heritability, suggest potential for adaptive selection in these species. By contrast, Ophiostoma montium displayed narrower intraspecific variation but greater tolerance to extreme high temperatures. Our study highlights unique phenotypic and genotypic characteristics in these symbionts that are consistent with our hypothesis. By maintaining this multipartite relationship, the bark beetles have a greater likelihood of obtaining the benefits afforded by the fungi and reduce the risk of being left aposymbiotic. Complementarity among species could facilitate colonization of new habitats and survival under adverse conditions.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Besouros/microbiologia , Ophiostomatales/genética , Simbiose , Animais , DNA Fúngico/genética , Ecossistema , Meio Ambiente , Frequência do Gene , Genética Populacional , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único
12.
Cladistics ; 33(5): 449-466, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34724755

RESUMO

Tectonic dynamics and niche availability play intertwined roles in determining patterns of diversification. Such drivers explain the current distribution of many clades, whereas events such as the rise of angiosperms can have more specific impacts, such as on the diversification rates of herbivores. The Tortricidae, a diverse group of phytophagous moths, are ideal for testing the effects of these determinants on the diversification of herbivorous clades. To estimate ancestral areas and diversification patterns in Tortricidae, a complete tribal-level dated tree was inferred using molecular markers (one mitochondrial and five nuclear) and calibrated using fossil constraints. We found that Tortricidae diverged from their sister group c. 120 Myr ago (Ma) and diversified c. 97 Ma, a timeframe synchronous with the rise of angiosperms in the Early-mid Cretaceous. Ancestral areas analysis, based on updated Wallace's biogeographical regions, supports the hypothesis of a Gondwanan origin of Tortricidae in the South American plate. We also detected an increase in speciation rate that coincided with the peak of angiosperm diversification in the Cretaceous. This in turn probably was further heightened by continental colonization of the Palaeotropics when angiosperms became dominant by the end of the Late Cretaceous.

13.
BMC Evol Biol ; 15: 73, 2015 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-25907684

RESUMO

BACKGROUND: The Mormon Metalmark (Apodemia mormo) species complex occurs as isolated and phenotypically variable colonies in dryland areas across western North America. Lange's Metalmark, A. m. langei, one of the 17 subspecies taxonomically recognized in the complex, is federally listed under the U.S. Endangered Species Act of 1973. Metalmark taxa have traditionally been described based on phenotypic and ecological characteristics, and it is unknown how well this nomenclature reflects their genetic and evolutionary distinctiveness. Genetic variation in six microsatellite loci and mitochondrial cytochrome oxidase subunit I sequence was used to assess the population structure of the A. mormo species complex across 69 localities, and to evaluate A. m. langei's qualifications as an Evolutionarily Significant Unit. RESULTS: We discovered substantial genetic divergence within the species complex, especially across the Continental Divide, with population genetic structure corresponding more closely with geographic proximity and local isolation than with taxonomic divisions originally based on wing color and pattern characters. Lange's Metalmark was as genetically divergent as several other locally isolated populations in California, and even the unique phenotype that warranted subspecific and conservation status is reminiscent of the morphological variation found in some other populations. CONCLUSIONS: This study is the first genetic treatment of the A. mormo complex across western North America and potentially provides a foundation for reassessing the taxonomy of the group. Furthermore, these results illustrate the utility of molecular markers to aid in demarcation of biological units below the species level. From a conservation point of view, Apodemia mormo langei's diagnostic taxonomic characteristics may, by themselves, not support its evolutionary significance, which has implications for its formal listing as an Endangered Species.


Assuntos
Evolução Biológica , Borboletas/classificação , Borboletas/genética , Espécies em Perigo de Extinção , Animais , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Variação Genética , Genética Populacional , Repetições de Microssatélites , Filogenia , Estados Unidos
14.
Mol Biol Evol ; 31(7): 1803-15, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24803641

RESUMO

The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins), a major pine forest pest native to western North America, has extended its range north and eastward during an ongoing outbreak. Determining how the MPB has expanded its range to breach putative barriers, whether physical (nonforested prairie and high elevation of the Rocky Mountains) or climatic (extreme continental climate where temperatures can be below -40 °C), may contribute to our general understanding of range changes as well as management of the current epidemic. Here, we use a panel of 1,536 single nucleotide polymorphisms (SNPs) to assess population genetic structure, connectivity, and signals of selection within this MPB range expansion. Biallelic SNPs in MPB from southwestern Canada revealed higher genetic differentiation and lower genetic connectivity than in the northern part of its range. A total of 208 unique SNPs were identified using different outlier detection tests, of which 32 returned annotations for products with putative functions in cholesterol synthesis, actin filament contraction, and membrane transport. We suggest that MPB has been able to spread beyond its previous range by adjusting its cellular and metabolic functions, with genome scale differentiation enabling populations to better withstand cooler climates and facilitate longer dispersal distances. Our study is the first to assess landscape-wide selective adaptation in an insect. We have shown that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this forest pest species.


Assuntos
Besouros/genética , Variação Genética , Adaptação Biológica , Alelos , Animais , Canadá , Besouros/fisiologia , Florestas , Frequência do Gene , Genoma de Inseto , Polimorfismo de Nucleotídeo Único , Seleção Genética
15.
Mol Ecol ; 24(2): 296-309, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25439007

RESUMO

Dispersal determines the flux of individuals, energy and information and is therefore a key determinant of ecological and evolutionary dynamics. Yet, it remains difficult to quantify its importance relative to other factors. This is particularly true in cyclic populations in which demography, drift and dispersal contribute to spatio-temporal variability in genetic structure. Improved understanding of how dispersal influences spatial genetic structure is needed to disentangle the multiple processes that give rise to spatial synchrony in irruptive species. In this study, we examined spatial genetic structure in an economically important irruptive forest insect, the spruce budworm (Choristoneura fumiferana) to better characterize how dispersal, demography and ecological context interact to influence spatial synchrony in a localized outbreak. We characterized spatial variation in microsatellite allele frequencies using 231 individuals and seven geographic locations. We show that (i) gene flow among populations is likely very high (Fst  ≈ 0); (ii) despite an overall low level of genetic structure, important differences exist between adult (moth) and juvenile (larvae) life stages; and (iii) the localized outbreak is the likely source of moths captured elsewhere in our study area. This study demonstrates the potential of using molecular methods to distinguish residents from migrants and for understanding how dispersal contributes to spatial synchronization. In irruptive populations, the strength of genetic structure depends on the timing of data collection (e.g. trough vs. peak), location and dispersal. Taking into account this ecological context allows us to make more general characterizations of how dispersal can affect spatial synchrony in irruptive populations.


Assuntos
Distribuição Animal , Fluxo Gênico , Genética Populacional , Mariposas/genética , Animais , Frequência do Gene , Variação Genética , Larva , Masculino , Repetições de Microssatélites , Minnesota , Ontário , Dinâmica Populacional , Análise de Sequência de DNA
16.
Mol Phylogenet Evol ; 93: 234-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26265257

RESUMO

DNA taxonomy has been proposed as a method to quickly assess diversity and species limits in highly diverse, understudied taxa. Here we use five methods for species delimitation and two genetic markers (COI and ITS2) to assess species diversity within the parasitoid genus, Ophion. We searched for compensatory base changes (CBC's) in ITS2, and determined that they are too rare to be of practical use in delimiting species in this genus. The other four methods used both COI and ITS2, and included distance-based (threshold analysis and ABGD) and tree-based (GMYC and PTP) models. We compared the results of these analyses to each other under various parameters and tested their performance with respect to 11 Nearctic species/morphospecies and 15 described Palearctic species. We also computed barcode accumulation curves of COI sequences to assess the completeness of sampling. The species count was highly variable depending on the method and parameters used, ranging from 47 to 168 species, with more conservative estimates of 89-121 species. Despite this range, many of the Nearctic test species were fairly robust with respect to method. We concluded that while there was often good congruence between methods, GMYC and PTP were less reliant on arbitrary parameters than the other two methods and more easily applied to genetic markers other than COI. However, PTP was less successful at delimiting test species than was GMYC. All methods, as well as the barcode accumulation curves, indicate that several Palearctic species remain undescribed and that we have scarcely begun to appreciate the Nearctic diversity within this genus.


Assuntos
Vespas/classificação , Animais , Código de Barras de DNA Taxonômico/métodos , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes de Insetos , Marcadores Genéticos , Proteínas de Insetos/genética , Filogenia , Análise de Sequência de DNA , Vespas/genética
17.
Cladistics ; 31(3): 291-314, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34772262

RESUMO

Numerous hypotheses on the evolution of Neotropical biodiversity have stimulated research to provide a better understanding of diversity dynamics and distribution patterns of the region. However, few studies integrate molecular and morphological data with complete sampling of a Neotropical group, and so there has been little synthesis of the multiple processes governing biodiversity through space and time. Here, a total-evidence phylogenetic approach is used to reconstruct the evolutionary history of the butterfly subgenus Heraclides. We used DNA sequences for two mitochondrial genes and one nuclear gene and coded 133 morphological characters of larvae and adults. A robust and well-resolved phylogeny was obtained using several analytical approaches, while molecular dating and biogeographical analyses indicated an early Miocene origin (22 Mya) in the Caribbean Islands. We inferred six independent dispersal events from the Caribbean to the mainland, and three from the mainland to the Caribbean, and we suggest that cooling climates with decreasing sea levels may have contributed to these events. The time-calibrated tree is best explained by a museum model of diversity in which both speciation and extinction rates remained constant through time. By assessing both continental and fine-scale biodiversity patterns, this study provides new findings, for instance that islands may act as source of diversity rather than as a sink, to explain spatio-temporal macroevolutionary processes within the Neotropical region.

18.
Cladistics ; 29(1): 88-111, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34814373

RESUMO

© The Willi Hennig Society 2012. ABSTRACT: Explanations for the high species diversity of the Indo-Australian Archipelago are often challenged by the region's complex climatic and geological histories. Here, we investigated the evolutionary history of swallowtail butterflies of the Papilio subgenus Achillides, comprising up to 25 recognized species and about 100 subspecies distributed across the Indo-Australian Archipelago. To estimate the relative contributions of factors influencing their biodiversity, we used DNA sequences to infer the phylogeny and species limits of 22 species including most of their subspecies. We recovered a highly resolved and well-supported phylogeny for the subgenus, and clarified some taxonomic ambiguities at the species level. The corresponding DNA-based species phylogeny was then employed to reconstruct their historical biogeography using relaxed-clock and parametric-based analyses. Molecular dating and biogeographical analyses showed that Achillides originated around 19 Ma in Sunda + Wallacea. Biogeographical reconstructions indicated that geological vicariance shaped the early evolutionary history of Achillides whereas dispersal influenced late diversification. Birth-death likelihood analyses allowed exploration of their tempo and mode of diversification. We detected several shifts in diversification rates that are attributable to past climate-induced biogeographical events. By assessing both regional and fine-scale biodiversity patterns, this study brings new findings to a biogeographical understanding of the Indo-Australian Archipelago.

19.
BMC Evol Biol ; 12: 82, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22690927

RESUMO

BACKGROUND: The temporal and geographical diversification of Neotropical insects remains poorly understood because of the complex changes in geological and climatic conditions that occurred during the Cenozoic. To better understand extant patterns in Neotropical biodiversity, we investigated the evolutionary history of three Neotropical swallowtail Troidini genera (Papilionidae). First, DNA-based species delimitation analyses were conducted to assess species boundaries within Neotropical Troidini using an enlarged fragment of the standard barcode gene. Molecularly delineated species were then used to infer a time-calibrated species-level phylogeny based on a three-gene dataset and Bayesian dating analyses. The corresponding chronogram was used to explore their temporal and geographical diversification through distinct likelihood-based methods. RESULTS: The phylogeny for Neotropical Troidini was well resolved and strongly supported. Molecular dating and biogeographic analyses indicate that the extant lineages of Neotropical Troidini have a late Eocene (33-42 Ma) origin in North America. Two independent lineages (Battus and Euryades+Parides) reached South America via the GAARlandia temporary connection, and later became extinct in North America. They only began substantive diversification during the early Miocene in Amazonia. Macroevolutionary analysis supports the "museum model" of diversification, rather than Pleistocene refugia, as the best explanation for the diversification of these lineages. CONCLUSIONS: This study demonstrates that: (i) current Neotropical biodiversity may have originated ex situ; (ii) the GAARlandia bridge was important in facilitating invasions of South America; (iii) colonization of Amazonia initiated the crown diversification of these swallowtails; and (iv) Amazonia is not only a species-rich region but also acted as a sanctuary for the dynamics of this diversity. In particular, Amazonia probably allowed the persistence of old lineages and contributed to the steady accumulation of diversity over time with constant net diversification rates, a result that contrasts with previous studies on other South American butterflies.


Assuntos
Borboletas/classificação , Borboletas/genética , Filogeografia , Animais , Aristolochia , Teorema de Bayes , Biodiversidade , Especiação Genética , América do Sul
20.
Ecol Lett ; 15(3): 267-77, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22251895

RESUMO

The latitudinal diversity gradient (LDG) is one of the most striking ecological patterns on our planet. Determining the evolutionary causes of this pattern remains a challenging task. To address this issue, previous LDG studies have usually relied on correlations between environmental variables and species richness, only considering evolutionary processes indirectly. Instead, we use a phylogenetically integrated approach to investigate the ecological and evolutionary processes responsible for the global LDG observed in swallowtail butterflies (Papilionidae). We find evidence for the 'diversification rate hypothesis' with different diversification rates between two similarly aged tropical and temperate clades. We conclude that the LDG is caused by (1) climatically driven changes in both clades based on evidence of responses to cooling and warming events, and (2) distinct biogeographical histories constrained by tropical niche conservatism and niche evolution. This multidisciplinary approach provides new findings that allow better understanding of the factors that shape LDGs.


Assuntos
Biodiversidade , Evolução Biológica , Borboletas/fisiologia , Ecologia , Animais , Clima , Filogenia , Filogeografia , Plantas , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA