Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Blood ; 142(2): 197-201, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37192299

RESUMO

The development of pathogenic antibody inhibitors against coagulation factor VIII (FVIII) occurs in ∼30% of patients with congenital hemophilia A receiving FVIII replacement therapy, as well as in all cases of acquired hemophilia A. KM33 is an anti-C1 domain antibody inhibitor previously isolated from a patient with severe hemophilia A. In addition to potently blocking FVIII binding to von Willebrand factor and phospholipid surfaces, KM33 disrupts FVIII binding to lipoprotein receptor-related protein 1 (LRP1), which drives FVIII hepatic clearance and antigen presentation in dendritic cells. Here, we report on the structure of FVIII bound to NB33, a recombinant derivative of KM33, via single-particle cryo-electron microscopy. Structural analysis revealed that the NB33 epitope localizes to the FVIII residues R2090-S2094 and I2158-R2159, which constitute membrane-binding loops in the C1 domain. Further analysis revealed that multiple FVIII lysine and arginine residues, previously shown to mediate binding to LRP1, dock onto an acidic cleft at the NB33 variable domain interface, thus blocking a putative LRP1 binding site. Together, these results demonstrate a novel mechanism of FVIII inhibition by a patient-derived antibody inhibitor and provide structural evidence for engineering FVIII with reduced LRP1-mediated clearance.


Assuntos
Hemofilia A , Hemostáticos , Humanos , Fator VIII/metabolismo , Microscopia Crioeletrônica , Domínios Proteicos , Fator de von Willebrand/metabolismo
2.
Mol Ther ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39192583

RESUMO

Antibody inhibitors pose an ongoing challenge to the treatment of subjects with inherited protein deficiency disorders, limiting the efficacy of both protein replacement therapy and corrective gene therapy. Beyond their central role as producers of serum antibody, B cells also exhibit many unique properties that could be exploited in cell therapy applications, notably including antigen-specific recognition and the linked capacity for antigen presentation. Here we employed CRISPR-Cas9 to demonstrate that ex vivo antigen-primed Blimp1-knockout "decoy" B cells, incapable of differentiation into plasma cells, participated in and downregulated host antigen-specific humoral responses after adoptive transfer. Following ex vivo antigen pulse, adoptively transferred high-affinity antigen-specific decoy B cells were diverted into germinal centers en masse, thereby reducing participation by endogenous antigen-specific B cells in T-dependent humoral responses and suppressing both cognate and linked antigen-specific immunoglobulin (Ig)G following immunization with conjugated antigen. This effect was dose-dependent and, importantly, did not impact concurrent unrelated antibody responses. We demonstrated the therapeutic potential of this approach by treating factor VIII (FVIII)-knockout mice with antigen-pulsed decoy B cells prior to immunization with an FVIII conjugate protein, thereby blunting the production of serum FVIII-specific IgG by an order of magnitude as well as reducing the proportion of animals exhibiting functional FVIII inhibition by 6-fold.

3.
Blood ; 137(21): 2981-2986, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33529335

RESUMO

Antibody inhibitor development in hemophilia A represents the most significant complication resulting from factor VIII (fVIII) replacement therapy. Recent studies have demonstrated that epitopes present in the C1 domain contribute to a pathogenic inhibitor response. In this study, we report the structure of a group A anti-C1 domain inhibitor, termed 2A9, in complex with a B domain-deleted, bioengineered fVIII construct (ET3i). The 2A9 epitope forms direct contacts to the C1 domain at 3 different surface loops consisting of Lys2065-Trp2070, Arg2150-Tyr2156, and Lys2110-Trp2112. Additional contacts are observed between 2A9 and the A3 domain, including the Phe1743-Tyr1748 loop and the N-linked glycosylation at Asn1810. Most of the C1 domain loops in the 2A9 epitope also represent a putative interface between fVIII and von Willebrand factor. Lastly, the C2 domain in the ET3i:2A9 complex adopts a large, novel conformational change, translocating outward from the structure of fVIII by 20 Å. This study reports the first structure of an anti-C1 domain antibody inhibitor and the first fVIII:inhibitor complex with a therapeutically active fVIII construct. Further structural understanding of fVIII immunogenicity may result in the development of more effective and safe fVIII replacement therapies.


Assuntos
Anticorpos Monoclonais/química , Complexo Antígeno-Anticorpo/química , Fator VIII/química , Proteínas Recombinantes de Fusão/química , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Fator VIII/genética , Fator VIII/imunologia , Fator VIII/metabolismo , Hemofilia A/genética , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Camundongos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Suínos
4.
Planta Med ; 89(7): 754-763, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36863394

RESUMO

The phytochemical investigation of extracts of Dalea jamesii root and aerial portions led to the isolation of ten phenolic compounds. Six previously undescribed prenylated isoflavans, summarily named ormegans A - F (1 - 6: ), were characterized, along with two new arylbenzofurans (7, 8: ), a known flavone (9: ), and a known chroman (10: ). The structures of the new compounds were deduced by NMR spectroscopy, supported by HRESI mass spectrometry. The absolute configurations of 1 - 6: were determined by circular dichroism spectroscopy. Compounds 1 - 9: exhibited in vitro antimicrobial activities, causing 98% or greater growth inhibition at concentrations as low as 2.5 - 5.1 µM against methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, and Cryptococcus neoformans. Interestingly, the most active compound was the dimeric arylbenzofuran 8: (> 90% growth inhibition at 2.5 µM) against both methicillin-resistant S. aureus and vancomycin-resistant E. faecalis, tenfold more active than its corresponding monomer (7: ).


Assuntos
Anti-Infecciosos , Extratos Vegetais , Antibacterianos/química , Anti-Infecciosos/farmacologia , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Fenóis , Vancomicina/farmacologia , Extratos Vegetais/farmacologia , Flavonoides
5.
Blood ; 139(24): 3451-3453, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35708725
7.
Blood ; 122(26): 4270-8, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24085769

RESUMO

The factor VIII C2 domain is a highly immunogenic domain, whereby inhibitory antibodies develop following factor VIII replacement therapy for congenital hemophilia A patients. Inhibitory antibodies also arise spontaneously in cases of acquired hemophilia A. The structural basis for molecular recognition by 2 classes of anti-C2 inhibitory antibodies that bind to factor VIII simultaneously was investigated by x-ray crystallography. The C2 domain/3E6 FAB/G99 FAB ternary complex illustrates that each antibody recognizes epitopes on opposing faces of the factor VIII C2 domain. The 3E6 epitope forms direct contacts to the C2 domain at 2 loops consisting of Glu2181-Ala2188 and Thr2202-Arg2215, whereas the G99 epitope centers on Lys2227 and also makes direct contacts with loops Gln2222-Trp2229, Leu2261-Ser2263, His2269-Val2282, and Arg2307-Gln2311. Each binding interface is highly electrostatic, with positive charge present on both C2 epitopes and complementary negative charge on each antibody. A new model of membrane association is also presented, where the 3E6 epitope faces the negatively charged membrane surface and Arg2320 is poised at the center of the binding interface. These results illustrate the potential complexities of the polyclonal anti-factor VIII immune response and further define the "classical" and "nonclassical" types of antibody inhibitors against the factor VIII C2 domain.


Assuntos
Anticorpos/química , Epitopos/química , Fator VIII/química , Hemofilia A/sangue , Fatores de Complexo Ternário/química , Anticorpos/imunologia , Cristalografia por Raios X , Eletroquímica , Epitopos/imunologia , Fator VIII/imunologia , Hemofilia A/imunologia , Humanos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Fatores de Complexo Ternário/imunologia
8.
J Biol Chem ; 288(14): 9905-9914, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23417672

RESUMO

The most significant complication for patients with severe cases of congenital or acquired hemophilia A is the development of inhibitor antibodies against coagulation factor VIII (fVIII). The C2 domain of fVIII is a significant antigenic target of anti-fVIII antibodies. Here, we have utilized small angle x-ray scattering (SAXS) and biochemical techniques to characterize interactions between two different classes of anti-C2 domain inhibitor antibodies and the isolated C2 domain. Multiple assays indicated that antibodies 3E6 and G99 bind independently to the fVIII C2 domain and can form a stable ternary complex. SAXS-derived numerical estimates of dimensional parameters for all studied complexes agree with the proportions of the constituent proteins. Ab initio modeling of the SAXS data results in a long kinked structure of the ternary complex, showing an angle centered at the C2 domain of ∼130°. Guided by biochemical data, rigid body modeling of subunits into the molecular envelope of the ternary complex suggests that antibody 3E6 recognizes a C2 domain epitope consisting of the Arg(2209)-Ser(2216) and Leu(2178)-Asp(2187) loops. In contrast, antibody G99 recognizes the C2 domain primarily through the Pro(2221)-Trp(2229) loop. These two epitopes are on opposing sides of the fVIII C2 domain, are consistent with the solvent accessibility in the context of the entire fVIII molecule, and provide further structural detail regarding the pathogenic immune response to fVIII.


Assuntos
Fator VIII/química , Fatores de Coagulação Sanguínea/química , Cromatografia/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/química , Fator VIII/metabolismo , Hemofilia A/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Solventes/química
9.
Nucleic Acids Res ; 40(1): 360-70, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21908407

RESUMO

Thiostrepton, a macrocyclic thiopeptide antibiotic, inhibits prokaryotic translation by interfering with the function of elongation factor G (EF-G). Here, we have used 70S ribosome binding and GTP hydrolysis assays to study the effects of thiostrepton on EF-G and a newly described translation factor, elongation factor 4 (EF4). In the presence of thiostrepton, ribosome-dependent GTP hydrolysis is inhibited for both EF-G and EF4, with IC(50) values equivalent to the 70S ribosome concentration (0.15 µM). Further studies indicate the mode of thiostrepton inhibition is to abrogate the stable binding of EF-G and EF4 to the 70S ribosome. In support of this model, an EF-G truncation variant that does not possess domains IV and V was shown to possess ribosome-dependent GTP hydrolysis activity that was not affected by the presence of thiostrepton (>100 µM). Lastly, chemical footprinting was employed to examine the nature of ribosome interaction and tRNA movements associated with EF4. In the presence of non-hydrolyzable GTP, EF4 showed chemical protections similar to EF-G and stabilized a ratcheted state of the 70S ribosome. These data support the model that thiostrepton inhibits stable GTPase binding to 70S ribosomal complexes, and a model for the first step of EF4-catalyzed reverse-translocation is presented.


Assuntos
Antibacterianos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Fator G para Elongação de Peptídeos/antagonistas & inibidores , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/efeitos dos fármacos , Tioestreptona/farmacologia , Fatores de Elongação da Transcrição/antagonistas & inibidores , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Mutação , Fator G para Elongação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , Ribossomos/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
10.
Phytochemistry ; 226: 114224, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39032794

RESUMO

The phytochemical investigation of extracts from Dalea nana roots and aerial parts led to the isolation of thirteen phenolic compounds. Three previously undescribed isoflavans, named verdeans A-C (1, 3, and 7), were characterized. Two additional isoflavans (2 and 5) were previously undescribed enantiomers of known compounds. A previously undescribed isoflavone (verdean D, 10) was found, and the known specialized metabolites, isoflavans 4, 6, 8, and 9, isoflavone 11, flavone 12, and a 2-arylbenzofuran 13, were also isolated. All but one (7) of the isoflavans were prenylated. The structures of the previously undescribed compounds were deduced by NMR spectroscopy, supported by HRESI mass spectrometry. The absolute configurations of 1-3, 5, and 7-9 were determined by ECD. Compounds 1, 3, 4, 6, and 8 exhibited in vitro antimicrobial activities, causing complete growth inhibition (MIC) at concentrations between 6.7 and 37.0 µM against Cryptococcus neoformans and between 8.9 and 25.0 µM against methicillin resistant Staphylococcus aureus (MRSA). The most broadly active previously undescribed compound was verdean A (1), with MIC values of 6.7 and 12.9 µM toward C. neoformans and MRSA, respectively, and an MIC of 10.0 µM against the often-intractable C. albicans.


Assuntos
Cryptococcus neoformans , Isoflavonas , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Isoflavonas/química , Isoflavonas/farmacologia , Isoflavonas/isolamento & purificação , Estrutura Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Raízes de Plantas/química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação
11.
J Thromb Haemost ; 22(3): 633-644, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38016519

RESUMO

BACKGROUND: Laboratory resurrection of ancient coagulation factor (F) IX variants generated through ancestral sequence reconstruction led to the discovery of a FIX variant, designated An96, which possesses enhanced specific activity independent of and additive to that provided by human p.Arg384Lys, referred to as FIX-Padua. OBJECTIVES: The goal of the current study was to identify the amino acid substitution(s) responsible for the enhanced activity of An96 and create a humanized An96 FIX transgene for gene therapy application. METHODS: Reductionist screening approaches, including domain swapping and scanning residue substitution, were used and guided by one-stage FIX activity assays. In vitro characterization of top candidates included recombinant high-purity preparation, specific activity determination, and enzyme kinetic analysis. Final candidates were packaged into adeno-associated viral (AAV) vectors and delivered to hemophilia B mice. RESULTS: Five of 42 total amino acid substitutions in An96 appear sufficient to retain the enhanced activity of An96 in an otherwise human FIX variant. Additional substitution of the Padua variant further increased the specific activity 5-fold. This candidate, designated ET9, demonstrated 51-fold greater specific activity than hFIX. AAV2/8-ET9 treated hemophilia B mice produced plasma FIX activities equivalent to those observed previously for AAV2/8-An96-Padua, which were 10-fold higher than AAV2/8-hFIX-Padua. CONCLUSION: Starting from computationally inferred ancient FIX sequences, novel amino acid substitutions conferring activity enhancement were identified and translated into an AAV-FIX gene therapy cassette demonstrating high potency. This ancestral sequence reconstruction discovery and sequence mapping refinement approach represents a promising platform for broader protein drug and gene therapy candidate optimization.


Assuntos
Fator IX , Hemofilia B , Humanos , Camundongos , Animais , Fator IX/metabolismo , Hemofilia B/terapia , Hemofilia B/tratamento farmacológico , Cinética , Terapia Genética , Substituição de Aminoácidos , Vetores Genéticos , Dependovirus/genética , Dependovirus/metabolismo
12.
Nat Struct Mol Biol ; 14(6): 493-7, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17515906

RESUMO

During protein synthesis, transfer RNA and messenger RNA undergo coupled translocation through the ribosome's A, P and E sites, a process catalyzed by elongation factor EF-G. Viomycin blocks translocation on bacterial ribosomes and is believed to bind at the subunit interface. Using fluorescent resonance energy transfer and chemical footprinting, we show that viomycin traps the ribosome in an intermediate state of translocation. Changes in FRET efficiency show that viomycin causes relative movement of the two ribosomal subunits indistinguishable from that induced by binding of EF-G with GDPNP. Chemical probing experiments indicate that viomycin induces formation of a hybrid-state translocation intermediate. Thus, viomycin inhibits translation through a unique mechanism, locking ribosomes in the hybrid state; the EF-G-induced 'ratcheted' state observed by cryo-EM is identical to the hybrid state; and, since translation is viomycin sensitive, the hybrid state may be present in vivo.


Assuntos
Modelos Moleculares , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Subunidades Ribossômicas/metabolismo , Viomicina/farmacologia , Transferência Ressonante de Energia de Fluorescência , Fator G para Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas/fisiologia
13.
Front Mol Biosci ; 9: 1040106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387287

RESUMO

At sites of vascular damage, factor VIII (fVIII) is proteolytically activated by thrombin and binds to activated platelet surfaces with activated factor IX (fIXa) to form the intrinsic "tenase" complex. Previous structural and mutational studies of fVIII have identified the C1 and C2 domains in binding to negatively charged membrane surfaces through ß-hairpin loops with solvent-exposed hydrophobic residues and a ring of positively charged basic residues. Several hemophilia A-associated mutations within the C domains are suggested to disrupt lipid binding, preventing formation of the intrinsic tenase complex. In this study, we devised a novel platform for generating recombinant C1, C2, and C1C2 domain constructs and performed mutagenesis of several charged residues proximal to the putative membrane binding region of each C domain. Binding measurements between phosphatidylserine (PS)-containing lipid membrane surfaces and fVIII C domains demonstrated an ionic strength dependence on membrane binding affinity. Mutations to basic residues adjacent to the surface-exposed hydrophobic regions of C1 and C2 differentially disrupted membrane binding, with abrogation of binding occurring for mutations to conserved arginine residues in the C1 (R2163) and C2 (R2320) domains. Lastly, we determined the X-ray crystal structure of the porcine fVIII C2 domain bound to o-phospho-L-serine, the polar headgroup of PS, which binds to a basic cleft and makes charge-charge contact with R2320. We conclude that basic clefts in the fVIII C domains bind to PS-containing membranes through conserved arginine residues via a C domain modularity, where each C domain possesses modest electrostatic-dependent affinity and tandem C domains are required for high affinity binding.

14.
Front Immunol ; 12: 697602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177966

RESUMO

Factor VIII (fVIII) is a procoagulant protein that binds to activated factor IX (fIXa) on platelet surfaces to form the intrinsic tenase complex. Due to the high immunogenicity of fVIII, generation of antibody inhibitors is a common occurrence in patients during hemophilia A treatment and spontaneously occurs in acquired hemophilia A patients. Non-classical antibody inhibitors, which block fVIII activation by thrombin and formation of the tenase complex, are the most common anti-C2 domain pathogenic inhibitors in hemophilia A murine models and have been identified in patient plasmas. In this study, we report on the X-ray crystal structure of a B domain-deleted bioengineered fVIII bound to the non-classical antibody inhibitor, G99. While binding to G99 does not disrupt the overall domain architecture of fVIII, the C2 domain undergoes an ~8 Å translocation that is concomitant with breaking multiple domain-domain interactions. Analysis of normalized B-factor values revealed several solvent-exposed loops in the C1 and C2 domains which experience a decrease in thermal motion in the presence of inhibitory antibodies. These results enhance our understanding on the structural nature of binding non-classical inhibitors and provide a structural dynamics-based rationale for cooperativity between anti-C1 and anti-C2 domain inhibitors.


Assuntos
Anticorpos Monoclonais Murinos/química , Fator VIII/antagonistas & inibidores , Fator VIII/química , Animais , Anticorpos Monoclonais Murinos/imunologia , Cristalografia por Raios X , Fator VIII/imunologia , Hemofilia A/sangue , Hemofilia A/imunologia , Humanos , Camundongos , Simulação de Dinâmica Molecular , Conformação Proteica , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Suínos
15.
RSC Adv ; 9(55): 32210-32218, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35530773

RESUMO

An archazolid natural product fragment that displays dose-dependent inhibition of the vacuolar-type ATPase (VATPase) has been synthesized by a high-yielding Suzuki coupling of two complex subunits. Similarly, a further simplified fragment was prepared and evaluated for VATPase inhibitory activity. This compound did inhibit the VATPase, as evidenced by growth inhibition of etiolated Arabidopsis seedlings, however at approximately 10× lower potency than the more complex fragment. Cyclooxygenase (COX) enzyme inhibition was not observed for either fragment.

16.
RSC Adv ; 9(60): 34963, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35532435

RESUMO

[This corrects the article DOI: 10.1039/C9RA07050H.].

17.
J Mol Biol ; 370(3): 530-40, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17512008

RESUMO

Protein synthesis is believed to be a dynamic process, involving structural rearrangements of the ribosome. Cryo-EM reconstructions of certain elongation factor G (EF-G)-containing complexes have led to the proposal that translocation of tRNA and mRNA through the ribosome, from the A to P to E sites, is accompanied by a rotational movement between the two ribosomal subunits. Here, we have used Förster resonance energy transfer (FRET) to monitor changes in the relative orientation of the ribosomal subunits in different complexes trapped at intermediate stages of translocation in solution. Binding of EF-G to the ribosome in the presence of the non-hydrolyzable GTP analogue GDPNP or GTP plus fusidic acid causes an increase in the efficiency of energy transfer between fluorophores introduced into proteins S11 in the 30 S subunit and L9 in the 50 S subunit, and a decrease in energy transfer between S6 and L9. Similar anti-correlated changes in energy transfer occur upon binding the GTP-requiring release factor RF3. These changes are consistent with the counter-clockwise rotation of the 30 S subunit relative to the 50 S subunit observed in cryo-EM studies. Reaction of ribosomal complexes containing the peptidyl-tRNA analogues N-Ac-Phe-tRNAPhe, N-Ac-Met-tRNAMet or f-Met-tRNAfMet with puromycin, conditions favoring movement of the resulting deacylated tRNAs into the P/E hybrid state, leads to similar changes in FRET. Conversely, treatment of a ribosomal complex containing deacylated and peptidyl-tRNAs bound in the A/P and P/E states, respectively, with EF-G.GTP causes reversal of the FRET changes. The use of FRET has enabled direct observation of intersubunit movement in solution, provides independent evidence that formation of the hybrid state is coupled to rotation of the 30 S subunit and shows that the intersubunit movement is reversed during the second step of translocation.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Subunidades Proteicas/metabolismo , Ribossomos , Corantes Fluorescentes/metabolismo , Modelos Moleculares , Fator G para Elongação de Peptídeos/química , Fator G para Elongação de Peptídeos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Ribossomos/química , Ribossomos/metabolismo , Soluções
18.
Structure ; 14(5): 869-80, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16698548

RESUMO

Homing endonucleases are highly specific catalysts of DNA strand breaks, leading to the transfer of mobile intervening sequences containing the endonuclease ORF. We have determined the structure and DNA recognition behavior of I-CeuI, a homodimeric LAGLIDADG endonuclease from Chlamydomonas eugametos. This symmetric endonuclease displays unique structural elaborations on its core enzyme fold, and it preferentially cleaves a highly asymmetric target site. This latter property represents an early step, prior to gene fusion, in the generation of asymmetric DNA binding platforms from homodimeric ancestors. The divergence of the sequence, structure, and target recognition behavior of homing endonucleases, as illustrated by this study, leads to the invasion of novel genomic sites by mobile introns during evolution.


Assuntos
Chlamydomonas/enzimologia , DNA/química , Endodesoxirribonucleases/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Endodesoxirribonucleases/classificação , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Dobramento de Proteína , Especificidade por Substrato
19.
Synlett ; 28(9): 1101-1105, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31592212

RESUMO

A convergent synthesis of a C1-C23 fragment of the archazolids has been completed based on a high yielding Stille coupling to costruct the substituted Z,Z,E-conjugated triene. After removal of the protecting groups, the resulting tetrol exhibited evidence for inhibition of the vacuolar-type ATPase (V-ATPase) but not cyclooxygenase (COX) inhibitory activity.

20.
Chem Biol ; 11(10): 1413-22, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15489168

RESUMO

Factor VIII is a critical member of the blood coagulation cascade. It binds to the membrane surfaces of activated platelets at the site of vascular injury via a highly specific interaction between factor VIII's carboxy-terminal C2 domain and their phosphatidylserine-rich lipid bilayer. We have identified small-molecule inhibitors of factor VIII's membrane binding activity that have IC50 values as low as 2.5 microM. This interaction is approximately 10(3)-fold tighter than that of free o-phospho-L-serine. These compounds also inhibit factor VIII-dependent activation of factor X, indicating that disruption of membrane lipid binding leads to inhibition of the intrinsic coagulation pathway. The tightest binding inhibitor is specific and does not prevent membrane binding by the closely related coagulation factor V. These results indicate that this and related compounds may be used as leads to develop novel antithrombotic agents.


Assuntos
Inibidores dos Fatores de Coagulação Sanguínea/isolamento & purificação , Inibidores dos Fatores de Coagulação Sanguínea/metabolismo , Fator VIII/antagonistas & inibidores , Fator VIII/química , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Inibidores dos Fatores de Coagulação Sanguínea/química , Relação Dose-Resposta a Droga , Fator VIII/metabolismo , Concentração Inibidora 50 , Proteínas de Membrana/metabolismo , Peso Molecular , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA