Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 24(16): 18642-8, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505826

RESUMO

In this work we have developed aperiodic Molybdenum/Silicon (Mo/Si) multilayers (MLs) to reflect 16.25 keV photons at a grazing angle of incidence of 0.6° ± 0.05°. To the best of our knowledge this is the first time this material system has been used to fabricate aperiodic MLs for hard x-rays. At these energies new hurdles arise. First of all a large number of bilayers is required to reach saturation. This poses a challenge from the manufacturing point of view, as thickness control of each ML period becomes paramount. The latter is not well defined a priori, due to the thickness of the interfacial silicide layers which has been observed to vary as a function of Mo and Si thickness. Additionally an amorphous-to-crystalline transition for Mo must be avoided in order maintain reasonably low roughness at the interfaces. This transition is well within the range of thicknesses pertinent to this study. Despite these difficulties our data demonstrates that we achieved reasonably flat ML response across the angular acceptance of ± 0.05°, with an experimentally confirmed average reflectivity of 28%. Such a ML prescription is well suited for applications in the field of hard x-ray imaging of highly diverging sources.

2.
Nature ; 448(7154): 676-9, 2007 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-17687320

RESUMO

Extremely intense and ultrafast X-ray pulses from free-electron lasers offer unique opportunities to study fundamental aspects of complex transient phenomena in materials. Ultrafast time-resolved methods usually require highly synchronized pulses to initiate a transition and then probe it after a precisely defined time delay. In the X-ray regime, these methods are challenging because they require complex optical systems and diagnostics. Here we propose and apply a simple holographic measurement scheme, inspired by Newton's 'dusty mirror' experiment, to monitor the X-ray-induced explosion of microscopic objects. The sample is placed near an X-ray mirror; after the pulse traverses the sample, triggering the reaction, it is reflected back onto the sample by the mirror to probe this reaction. The delay is encoded in the resulting diffraction pattern to an accuracy of one femtosecond, and the structural change is holographically recorded with high resolution. We apply the technique to monitor the dynamics of polystyrene spheres in intense free-electron-laser pulses, and observe an explosion occurring well after the initial pulse. Our results support the notion that X-ray flash imaging can be used to achieve high resolution, beyond radiation damage limits for biological samples. With upcoming ultrafast X-ray sources we will be able to explore the three-dimensional dynamics of materials at the timescale of atomic motion.


Assuntos
Holografia/métodos , Poliestirenos/química , Raios X , Elétrons , Lasers , Microesferas , Fatores de Tempo
3.
Nano Lett ; 8(1): 310-6, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18095739

RESUMO

In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at suboptical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

4.
Appl Opt ; 47(10): 1673-83, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18382600

RESUMO

We describe a camera to record coherent scattering patterns with a soft-x-ray free-electron laser (FEL). The camera consists of a laterally graded multilayer mirror, which reflects the diffraction pattern onto a CCD detector. The mirror acts as a bandpass filter for both the wavelength and the angle, which isolates the desired scattering pattern from nonsample scattering or incoherent emission from the sample. The mirror also solves the particular problem of the extreme intensity of the FEL pulses, which are focused to greater than 10(14) W/cm2. The strong undiffracted pulse passes through a hole in the mirror and propagates onto a beam dump at a distance behind the instrument rather than interacting with a beam stop placed near the CCD. The camera concept is extendable for the full range of the fundamental wavelength of the free electron laser in Hamburg (FLASH) FEL (i.e., between 6 and 60 nm) and into the water window. We have fabricated and tested various multilayer mirrors for wavelengths of 32, 16, 13.5, and 4.5 nm. At the shorter wavelengths mirror roughness must be minimized to reduce scattering from the mirror. We have recorded over 30,000 diffraction patterns at the FLASH FEL with no observable mirror damage or degradation of performance.

5.
Appl Opt ; 46(18): 3736-46, 2007 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-17538670

RESUMO

Multilayer coating results are discussed for the primary and secondary mirrors of the micro-exposure tool (MET): a 0.30 NA lithographic imaging system with a 200 microm x 600 microm field of view at the wafer plane, operating in the extreme ultraviolet (EUV) region at an illumination wavelength around 13.4 nm. Mo/Si multilayers were deposited by DC-magnetron sputtering on large-area, curved MET camera substrates. A velocity modulation technique was implemented to consistently achieve multilayer thickness profiles with added figure errors below 0.1 nm rms demonstrating sub-diffraction-limited performance, as defined by the classical diffraction limit of Rayleigh (0.25 waves peak to valley) or Marechal (0.07 waves rms). This work is an experimental demonstration of sub-diffraction- limited multilayer coatings for high-NA EUV imaging systems, which resulted in the highest resolution microfield EUV images to date.


Assuntos
Óptica e Fotônica , Raios Ultravioleta , Algoritmos , Desenho de Equipamento , Magnetismo , Modelos Estatísticos , Modelos Teóricos , Espalhamento de Radiação , Espectrofotometria Ultravioleta , Propriedades de Superfície
6.
Phys Rev Lett ; 98(14): 145502, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17501285

RESUMO

At the recently built FLASH x-ray free-electron laser, we studied the reflectivity of Si/C multilayers with fluxes up to 3 x 10(14) W/cm2. Even though the nanostructures were ultimately completely destroyed, we found that they maintained their integrity and reflectance characteristics during the 25-fs-long pulse, with no evidence for any structural changes over lengths greater than 3 A. This experiment demonstrates that with intense ultrafast pulses, structural damage does not occur during the pulse, giving credence to the concept of diffraction imaging of single macromolecules.

7.
Appl Opt ; 42(19): 4049-58, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12868847

RESUMO

An ion-beam deposition system has been used to fabricate Mo-Si multilayer coatings for masks and imaging optics to be used for extreme-ultraviolet lithography. In addition to high reflectivity and excellent profile control, ion-beam deposition has the capability to smooth rough substrates. For example, we achieved reflectivity of 66.8% on a substrate with 0.39-nm roughness. Smoothing can be further enhanced with a second ion source directed at the multilayer coating. The smoothing capabilities relax the requirement on the finish of the mirror and the mask substrates and could dramatically reduce the cost of these components. Thickness profile control is in the +/-0.01% range, and the figure error added to the mirror substrate by errors in the multilayer thickness is less than 0.1 nm. Peak reflectivities obtained on smooth substrates are 67.5-68.6%.

8.
Appl Opt ; 41(16): 3262-9, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12064411

RESUMO

We present our results of coating a first set of optical elements for an extreme-ultraviolet (EUV) lithography system. The optics were coated with Mo-Si multilayer mirrors by dc magnetron sputtering and characterized by synchrotron radiation. Near-normal incidence reflectances above 65% were achieved at 13.35 nm. The run-to-run reproducibility of the reflectance peak wavelength was maintained to within 0.4%, and the thickness uniformity (or gradient) was controlled to within +/-0.05% peak to valley, exceeding the prescribed specification. The deposition technique used for this study is an enabling technology for EUV lithography, making it possible to fabricate multilayer-coated optics to accuracies commensurate with atomic dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA