Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hepatol ; 70(4): 700-709, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30553841

RESUMO

BACKGROUND & AIMS: In cholangiocarcinoma, early metastatic spread via lymphatic vessels often precludes curative therapies. Cholangiocarcinoma invasiveness is fostered by an extensive stromal reaction, enriched in cancer-associated fibroblasts (CAFs) and lymphatic endothelial cells (LECs). Cholangiocarcinoma cells recruit and activate CAFs by secreting PDGF-D. Herein, we investigated the role of PDGF-D and liver myofibroblasts in promoting lymphangiogenesis in cholangiocarcinoma. METHODS: Human cholangiocarcinoma specimens were immunostained for podoplanin (LEC marker), α-SMA (CAF marker), VEGF-A, VEGF-C, and their cognate receptors (VEGFR2, VEGFR3). VEGF-A and VEGF-C secretion was evaluated in human fibroblasts obtained from primary sclerosing cholangitis explants. Using human LECs incubated with conditioned medium from PDGF-D-stimulated fibroblasts we assessed migration, 3D vascular assembly, transendothelial electric resistance and transendothelial migration of cholangiocarcinoma cells (EGI-1). We then studied the effects of selective CAF depletion induced by the BH3 mimetic navitoclax on LEC density and lymph node metastases in vivo. RESULTS: In cholangiocarcinoma specimens, CAFs and LECs were closely adjacent. CAFs expressed VEGF-A and VEGF-C, while LECs expressed VEGFR2 and VEGFR3. Upon PDGF-D stimulation, fibroblasts secreted increased levels of VEGF-C and VEGF-A. Fibroblasts, stimulated by PDGF-D induced LEC recruitment and 3D assembly, increased LEC monolayer permeability, and promoted transendothelial EGI-1 migration. These effects were all suppressed by the PDGFRß inhibitor, imatinib. In the rat model of cholangiocarcinoma, navitoclax-induced CAF depletion, markedly reduced lymphatic vascularization and reduced lymph node metastases. CONCLUSION: PDGF-D stimulates VEGF-C and VEGF-A production by fibroblasts, resulting in expansion of the lymphatic vasculature and tumor cell intravasation. This critical process in the early metastasis of cholangiocarcinoma may be blocked by inducing CAF apoptosis or by inhibiting the PDGF-D-induced axis. LAY SUMMARY: Cholangiocarcinoma is a highly malignant cancer affecting the biliary tree, which is characterized by a rich stromal reaction involving a dense population of cancer-associated fibroblasts that promote early metastatic spread. Herein, we show that cholangiocarcinoma-derived PDGF-D stimulates fibroblasts to secrete vascular growth factors. Thus, targeting fibroblasts or PDGF-D-induced signals may represent an effective tool to block tumor-associated lymphangiogenesis and reduce the invasiveness of cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Fígado/patologia , Linfangiogênese/efeitos dos fármacos , Linfocinas/metabolismo , Linfocinas/farmacologia , Miofibroblastos/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Animais , Neoplasias dos Ductos Biliares/patologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Xenoenxertos , Humanos , Mesilato de Imatinib/farmacologia , Masculino , Camundongos , Camundongos SCID , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Endogâmicos F344 , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator C de Crescimento do Endotélio Vascular/biossíntese
2.
Hepatology ; 67(3): 972-988, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28836688

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR), the channel mutated in cystic fibrosis (CF), is expressed by the biliary epithelium (i.e., cholangiocytes) of the liver. Progressive clinical liver disease (CF-associated liver disease; CFLD) occurs in around 10% of CF patients and represents the third leading cause of death. Impaired secretion and inflammation contribute to CFLD; however, the lack of human-derived experimental models has hampered the understanding of CFLD pathophysiology and the search for a cure. We have investigated the cellular mechanisms altered in human CF cholangiocytes using induced pluripotent stem cells (iPSCs) derived from healthy controls and a ΔF508 CFTR patient. We have devised a novel protocol for the differentiation of human iPSC into polarized monolayers of cholangiocytes. Our results show that iPSC-cholangiocytes reproduced the polarity and the secretory function of the biliary epithelium. Protein kinase A/cAMP-mediated fluid secretion was impaired in ΔF508 cholangiocytes and negligibly improved by VX-770 and VX-809, two small molecule drugs used to correct and potentiate ΔF508 CFTR. Moreover, ΔF508 cholangiocytes showed increased phosphorylation of Src kinase and Toll-like receptor 4 and proinflammatory changes, including increased nuclear factor kappa-light-chain-enhancer of activated B cells activation, secretion of proinflammatory chemokines (i.e., monocyte chemotactic protein 1 and interleukin-8), as well as alterations of the F-actin cytoskeleton. Treatment with Src inhibitor (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine) decreased the inflammatory changes and improved cytoskeletal defects. Inhibition of Src, along with administration of VX-770 and VX-809, successfully restored fluid secretion to normal levels. CONCLUSION: Our findings have strong translational potential and indicate that targeting Src kinase and decreasing inflammation may increase the efficacy of pharmacological therapies aimed at correcting the basic ΔF508 defect in CF liver patients. These studies also demonstrate the promise of applying iPSC technology in modeling human cholangiopathies. (Hepatology 2018;67:972-988).


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/fisiopatologia , Pirimidinas/farmacologia , Quinolonas/farmacologia , Quinases da Família src/metabolismo , Animais , Sistema Biliar/citologia , Sistema Biliar/efeitos dos fármacos , Sistema Biliar/patologia , Técnicas de Cultura de Células , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Citocinas/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Imunofluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Inflamação/metabolismo , Camundongos , Microscopia Confocal , Transdução de Sinais , Quinases da Família src/antagonistas & inibidores
3.
Hepatology ; 67(5): 1903-1919, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29140564

RESUMO

Congenital hepatic fibrosis (CHF), a genetic disease caused by mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, encoding for the protein fibrocystin/polyductin complex, is characterized by biliary dysgenesis, progressive portal fibrosis, and a protein kinase A-mediated activating phosphorylation of ß-catenin at Ser675. Biliary structures of Pkhd1del4/del4 mice, a mouse model of CHF, secrete chemokine (C-X-C motif) ligand 10 (CXCL10), a chemokine able to recruit macrophages. The aim of this study was to clarify whether CXCL10 plays a pathogenetic role in disease progression in CHF/Caroli disease and to understand the mechanisms leading to increased CXCL10 secretion. We demonstrate that treatment of Pkhd1del4/del4 mice for 3 months with AMG-487, an inhibitor of CXC chemokine receptor family 3, the cognate receptor of CXCL10, reduces the peribiliary recruitment of alternative activated macrophages (cluster of differentiation 45+ F4/80+ cells), spleen size, liver fibrosis (sirius red), and cyst growth (cytokeratin 19-positive area), consistent with a pathogenetic role of CXCL10. Furthermore, we show that in fibrocystin/polyductin complex-defective cholangiocytes, isolated from Pkhd1del4/del4 mice, CXCL10 production is mediated by Janus kinase/signal transducer and activator of transcription 3 in response to interleukin 1beta (IL-1ß) and ß-catenin. Specifically, IL-1ß promotes signal transducer and activator of transcription 3 phosphorylation, whereas ß-catenin promotes its nuclear translocation. Increased pro-IL-1ß was regulated by nuclear factor kappa-light-chain-enhancer of activated B cells, and increased secretion of active IL-1ß was mediated by the activation of Nod-like receptors, pyrin domain containing 3 inflammasome (increased expression of caspase 1 and Nod-like receptors, pyrin domain containing 3). CONCLUSION: In fibrocystin/polyductin complex-defective cholangiocytes, ß-catenin and IL-1ß are responsible for signal transducer and activator of transcription 3-dependent secretion of CXCL10; in vivo experiments show that the CXCL10/CXC chemokine receptor family 3 axis prevents the recruitment of macrophages, reduces inflammation, and halts the progression of the disease; the increased production of IL-1ß highlights the autoinflammatory nature of CHF and may open novel therapeutic avenues. (Hepatology 2018;67:1903-1919).


Assuntos
Quimiocina CXCL10/metabolismo , Doenças Genéticas Inatas/metabolismo , Interleucina-1beta/metabolismo , Cirrose Hepática/metabolismo , beta Catenina/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais/metabolismo , Citometria de Fluxo , Imuno-Histoquímica , Fígado/metabolismo , Fígado/patologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR3/metabolismo , Transdução de Sinais
4.
Int J Mol Sci ; 20(16)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416247

RESUMO

In modern hepatology, diseases of the biliary epithelium, currently termed cholangiopathies, represent one of the main gaps in knowledge, both on experimental and clinical grounds, though they started to draw attention since the late 80s [...].


Assuntos
Doenças Biliares/etiologia , Doenças Biliares/metabolismo , Comunicação Celular , Suscetibilidade a Doenças , Animais , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Doenças Biliares/diagnóstico , Humanos , Fígado/metabolismo , Fígado/patologia , Regeneração Hepática , Cicatrização
5.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt B): 1435-1443, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28757170

RESUMO

Prognosis of cholangiocarcinoma, a devastating liver epithelial malignancy characterized by early invasiveness, remains very dismal, though its incidence has been steadily increasing. Evidence is mounting that in cholangiocarcinoma, tumor epithelial cells establish an intricate web of mutual interactions with multiple stromal components, largely determining the pervasive behavior of the tumor. The main cellular components of the tumor microenvironment (i.e. myofibroblasts, macrophages, lymphatic endothelial cells), which has been recently termed as 'tumor reactive stroma', are recruited and activated by neoplastic cells, and in turn, deleteriously mold tumor behavior by releasing a huge variety of paracrine signals, including cyto/chemokines, growth factors, morphogens and proteinases. An abnormally remodeled and stiff extracellular matrix favors and supports these cell interactions. Although the mechanisms responsible for the generation of tumor reactive stroma are largely uncertain, hypoxia presumably plays a central role. In this review, we will dissect the intimate relationship among the different cell elements cooperating within this complex 'ecosystem', with the ultimate goal to pave the way for a deeper understanding of the mechanisms underlying cholangiocarcinoma aggressiveness, and possibly, to foster the development of innovative, combinatorial therapies aimed at halting tumor progression. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Células Epiteliais/patologia , Comunicação Parácrina , Células Estromais/patologia , Animais , Ductos Biliares/citologia , Ductos Biliares/patologia , Hipóxia Celular , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Invasividade Neoplásica/patologia , Transdução de Sinais , Células Estromais/metabolismo , Microambiente Tumoral
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt B): 1374-1379, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28754453

RESUMO

The most studied physiological function of biliary epithelial cells (cholangiocytes) is to regulate bile flow and composition, in particular the hydration and alkalinity of the primary bile secreted by hepatocytes. After almost three decades of studies it is now become clear that cholangiocytes are also involved in epithelial innate immunity, in inflammation, and in the reparative processes in response to liver damage. An increasing number of evidence highlights the ability of cholangiocyte to undergo changes in phenotype and function in response to liver damage. By participating actively to the immune and inflammatory responses, cholangiocytes represent a first defense line against liver injury from different causes. Indeed, cholangiocytes express a number of receptors able to recognize pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), such as Toll-like receptors (TLR), which modulate their pro-inflammatory behavior. Cholangiocytes can be both the targets and the initiators of the inflammatory process. Derangements of the signals controlling these mechanisms are at the basis of the pathogenesis of different cholangiopathies, both hereditary and acquired, such as cystic fibrosis-related liver disease and sclerosing cholangitis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.


Assuntos
Ductos Biliares/imunologia , Colangite Esclerosante/imunologia , Colestase/imunologia , Células Epiteliais/imunologia , Imunidade Inata , Hepatopatias/imunologia , Animais , Ductos Biliares/citologia , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Colangite Esclerosante/genética , Colangite Esclerosante/patologia , Colestase/genética , Colestase/patologia , Fibrose Cística/genética , Fibrose Cística/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Fígado/imunologia , Fígado/patologia , Hepatopatias/genética , Hepatopatias/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo
7.
J Hepatol ; 66(3): 571-580, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27826057

RESUMO

BACKGROUND & AIMS: Genetic defects in polycystin-1 or -2 (PC1 or PC2) cause polycystic liver disease associated with autosomal dominant polycystic kidney disease (PLD-ADPKD). Progressive cyst growth is sustained by a cAMP-dependent Ras/ERK/HIFα pathway, leading to increased vascular endothelial growth factor A (VEGF-A) signaling. In PC2-defective cholangiocytes, cAMP production in response to [Ca2+]ER depletion is increased, while store-operated Ca2+ entry (SOCE), intracellular and endoplasmic reticulum [Ca2+]ER levels are reduced. We investigated whether the adenylyl cyclases, AC5 and AC6, which can be inhibited by Ca2+, are activated by the ER chaperone STIM1. This would result in cAMP/PKA-dependent Ras/ERK/HIFα pathway activation in PC2-defective cells, in response to [Ca2+]ER depletion. METHODS: PC2/AC6 double conditional knockout (KO) mice were generated (Pkd2/AC6 KO) and compared to Pkd2 KO mice. The AC5 inhibitor SQ22,536 or AC5 siRNA were used in isolated cholangiocytes while the inhibitor was used in biliary organoid and animals; liver tissues were harvested for histochemical analysis. RESULTS: When comparing Pkd2/AC6 KO to Pkd2 KO mice, no decrease in liver cyst size was found, and cellular cAMP after [Ca2+]ER depletion only decreased by 12%. Conversely, in PC2-defective cells, inhibition of AC5 significantly reduced cAMP production, pERK1/2 expression and VEGF-A secretion. AC5 inhibitors significantly reduced growth of biliary organoids derived from Pkd2 KO and Pkd2/AC6 KO mice. In vivo treatment with SQ22,536 significantly reduced liver cystic area and cell proliferation in PC2-defective mice. After [Ca2+]ER depletion in PC2-defective cells, STIM1 interacts with AC5 but not with Orai1, the Ca2+ channel that mediates SOCE. CONCLUSION: [Ca2+]ER depletion in PC2-defective cells activates AC5 and results in stimulation of cAMP/ERK1-2 signaling, VEGF production and cyst growth. This mechanism may represent a novel therapeutic target. LAY SUMMARY: Polycystic liver diseases are characterized by progressive cyst growth until their complications mandate surgery or liver transplantation. In this manuscript, we demonstrate that inhibiting cell proliferation, which is induced by increased levels of cAMP, may represent a novel therapeutic target to slow the progression of the disease.


Assuntos
Adenilil Ciclases/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , Cistos/genética , Cistos/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , Animais , Proliferação de Células , Cistos/patologia , Modelos Animais de Doenças , Homeostase , Humanos , Hepatopatias/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Interferência de RNA , Transdução de Sinais , Molécula 1 de Interação Estromal/metabolismo , Canais de Cátion TRPP/deficiência , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Am J Physiol Gastrointest Liver Physiol ; 313(2): G102-G116, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526690

RESUMO

Chronic diseases of the biliary tree (cholangiopathies) represent one of the major unmet needs in clinical hepatology and a significant knowledge gap in liver pathophysiology. The common theme in cholangiopathies is that the target of the disease is the biliary tree. After damage to the biliary epithelium, inflammatory changes stimulate a reparative response with proliferation of cholangiocytes and restoration of the biliary architecture, owing to the reactivation of a variety of morphogenetic signals. Chronic damage and inflammation will ultimately result in pathological repair with generation of biliary fibrosis and clinical progression of the disease. The hallmark of pathological biliary repair is the appearance of reactive ductular cells, a population of cholangiocyte-like epithelial cells of unclear and likely mixed origin that are able to orchestrate a complex process that involves a number of different cell types, under joint control of inflammatory and morphogenetic signals. Several questions remain open concerning the histogenesis of reactive ductular cells, their role in liver repair, their mechanism of activation, and the signals exchanged with the other cellular elements cooperating in the reparative process. This review contributes to the current debate by highlighting a number of new concepts derived from the study of the pathophysiology of chronic cholangiopathies, such as congenital hepatic fibrosis, biliary atresia, and Alagille syndrome.


Assuntos
Doenças dos Ductos Biliares/patologia , Hepatopatias/patologia , Animais , Sistema Biliar/patologia , Fibrose/patologia , Humanos , Fígado/patologia
9.
Hepatology ; 64(6): 2118-2134, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27629435

RESUMO

In the liver, the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) regulates bile secretion and other functions at the apical membrane of biliary epithelial cells (i.e., cholangiocytes). CF-related liver disease is a major cause of death in patients with CF. CFTR dysfunction affects innate immune pathways, generating a para-inflammatory status in the liver and other epithelia. This study investigates the mechanisms linking CFTR to toll-like receptor 4 activity. We found that CFTR is associated with a multiprotein complex at the apical membrane of normal mouse cholangiocytes, with proteins that negatively control Rous sarcoma oncogene cellular homolog (Src) activity. In CFTR-defective cholangiocytes, Src tyrosine kinase self-activates and phosphorylates toll-like receptor 4, resulting in activation of nuclear factor kappa-light-chain-enhancer of activated B cells and increased proinflammatory cytokine production in response to endotoxins. This Src/nuclear factor kappa-light-chain-enhancer of activated B cells-dependent inflammatory process attracts inflammatory cells but also generates changes in the apical junctional complex and loss of epithelial barrier function. Inhibition of Src decreased the inflammatory response of CF cholangiocytes to lipopolysaccharide, rescued the junctional defect in vitro, and significantly attenuated endotoxin-induced biliary damage and inflammation in vivo (Cftr knockout mice). CONCLUSION: These findings reveal a novel function of CFTR as a regulator of toll-like receptor 4 responses and cell polarity in biliary epithelial cells; this mechanism is pathogenetic, as shown by the protective effects of Src inhibition in vivo, and may be a novel therapeutic target in CF-related liver disease and other inflammatory cholangiopathies. (Hepatology 2016;64:2118-2134).


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Inflamação/etiologia , Receptor 4 Toll-Like/fisiologia , Quinases da Família src/fisiologia , Animais , Ductos Biliares/citologia , Ductos Biliares/enzimologia , Membrana Celular , Células Cultivadas , Fibrose Cística , Epitélio , Camundongos , Permeabilidade
10.
Hepatology ; 63(3): 965-82, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26645994

RESUMO

UNLABELLED: Congenital hepatic fibrosis (CHF) is a disease of the biliary epithelium characterized by bile duct changes resembling ductal plate malformations and by progressive peribiliary fibrosis, in the absence of overt necroinflammation. Progressive liver fibrosis leads to portal hypertension and liver failure; however, the mechanisms leading to fibrosis in CHF remain elusive. CHF is caused by mutations in PKHD1, a gene encoding for fibrocystin, a ciliary protein expressed in cholangiocytes. Using a fibrocystin-defective (Pkhd1(del4/del4)) mouse, which is orthologous of CHF, we show that Pkhd1(del4/del4) cholangiocytes are characterized by a ß-catenin-dependent secretion of a range of chemokines, including chemokine (C-X-C motif) ligands 1, 10, and 12, which stimulate bone marrow-derived macrophage recruitment. We also show that Pkhd1(del4/del4) cholangiocytes, in turn, respond to proinflammatory cytokines released by macrophages by up-regulating αvß6 integrin, an activator of latent local transforming growth factor-ß1. While the macrophage infiltrate is initially dominated by the M1 phenotype, the profibrogenic M2 phenotype increases with disease progression, along with the number of portal myofibroblasts. Consistent with these findings, clodronate-induced macrophage depletion results in a significant reduction of portal fibrosis and portal hypertension as well as of liver cysts. CONCLUSION: Fibrosis can be initiated by an epithelial cell dysfunction, leading to low-grade inflammation, macrophage recruitment, and collagen deposition; these findings establish a new paradigm for biliary fibrosis and represent a model to understand the relationship between cell dysfunction, parainflammation, liver fibrosis, and macrophage polarization over time.


Assuntos
Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Doenças Genéticas Inatas/imunologia , Cirrose Hepática/imunologia , Macrófagos/fisiologia , Receptores de Superfície Celular/deficiência , Animais , Antígenos de Neoplasias/metabolismo , Ácido Clodrônico , Colágeno/metabolismo , Modelos Animais de Doenças , Doenças Genéticas Inatas/metabolismo , Integrinas/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Miofibroblastos/fisiologia , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Int J Mol Sci ; 18(1)2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28098760

RESUMO

Resistance to conventional chemotherapeutic agents, a typical feature of cholangiocarcinoma, prevents the efficacy of the therapeutic arsenal usually used to combat malignancy in humans. Mechanisms of chemoresistance by neoplastic cholangiocytes include evasion of drug-induced apoptosis mediated by autocrine and paracrine cues released in the tumor microenvironment. Here, recent evidence regarding molecular mechanisms of chemoresistance is reviewed, as well as associations between well-developed chemoresistance and activation of the cancer stem cell compartment. It is concluded that improved understanding of the complex interplay between apoptosis signaling and the promotion of cell survival represent potentially productive areas for active investigation, with the ultimate aim of encouraging future studies to unveil new, effective strategies able to overcome current limitations on treatment.


Assuntos
Comunicação Autócrina , Colangiocarcinoma/patologia , Resistencia a Medicamentos Antineoplásicos , Comunicação Parácrina , Linhagem Celular Tumoral , Humanos , Células Estromais/patologia
12.
J Biol Chem ; 290(1): 184-96, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25378392

RESUMO

The type III isoform of the inositol 1,4,5-trisphosphate receptor (InsP3R3) is apically localized and triggers Ca(2+) waves and secretion in a number of polarized epithelia. However, nothing is known about epigenetic regulation of this InsP3R isoform. We investigated miRNA regulation of InsP3R3 in primary bile duct epithelia (cholangiocytes) and in the H69 cholangiocyte cell line, because the role of InsP3R3 in cholangiocyte Ca(2+) signaling and secretion is well established and because loss of InsP3R3 from cholangiocytes is responsible for the impairment in bile secretion that occurs in a number of liver diseases. Analysis of the 3'-UTR of human InsP3R3 mRNA revealed two highly conserved binding sites for miR-506. Transfection of miR-506 mimics into cell lines expressing InsP3R3-3'UTR-luciferase led to decreased reporter activity, whereas co-transfection with miR-506 inhibitors led to enhanced activity. Reporter activity was abrogated in isolated mutant proximal or distal miR-506 constructs in miR-506-transfected HEK293 cells. InsP3R3 protein levels were decreased by miR-506 mimics and increased by inhibitors, and InsP3R3 expression was markedly decreased in H69 cells stably transfected with miR-506 relative to control cells. miR-506-H69 cells exhibited a fibrotic signature. In situ hybridization revealed elevated miR-506 expression in vivo in human-diseased cholangiocytes. Histamine-induced, InsP3-mediated Ca(2+) signals were decreased by 50% in stable miR-506 cells compared with controls. Finally, InsP3R3-mediated fluid secretion was significantly decreased in isolated bile duct units transfected with miR-506, relative to control IBDU. Together, these data identify miR-506 as a regulator of InsP3R3 expression and InsP3R3-mediated Ca(2+) signaling and secretion.


Assuntos
Cálcio/metabolismo , Epigênese Genética , Células Epiteliais/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Cirrose Hepática Biliar/genética , MicroRNAs/genética , Regiões 3' não Traduzidas , Sequência de Bases , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Sítios de Ligação , Sinalização do Cálcio , Linhagem Celular , Células Epiteliais/patologia , Genes Reporter , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/patologia , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/metabolismo , Dados de Sequência Molecular , Ligação Proteica
13.
Gastroenterology ; 149(1): 211-222.e10, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25796361

RESUMO

BACKGROUND & AIMS: Most cholestatic disorders are caused by defects in cholangiocytes. The type 3 isoform of the inositol 1,4,5-trisphosphate receptor (ITPR3) is the most abundant intracellular calcium release channel in cholangiocytes. ITPR3 is required for bicarbonate secretion by bile ducts, and its expression is reduced in intrahepatic bile ducts of patients with cholestatic disorders. We investigated whether the nuclear factor, erythroid 2-like 2 (NFE2L2 or NRF2), which is sensitive to oxidative stress, regulates expression of ITPR3. METHODS: The activity of the ITPR3 promoter was measured in normal human cholangiocyte (NHC) cells and primary mouse cholangiocytes. Levels of ITPR3 protein and messenger RNA were examined by immunoblot and polymerase chain reaction analyses, respectively. ITPR3 activity was determined by measuring calcium signaling in normal human cholangiocyte cells and secretion in isolated bile duct units. Levels of NRF2 were measured in liver tissues from rats with cholestasis (induced by administration of α-napthylisothiocyanate) and from patients with biliary diseases. RESULTS: We identified a musculo-aponeurotic fibrosarcoma recognition element in the promoter of ITPR3 that bound NRF2 directly in NHC cells and mouse cholangiocytes. Increasing binding of NRF2 at this site resulted in chromatin remodeling that reduced promoter activity. Mutant forms of the musculo-aponeurotic fibrosarcoma recognition element did not bind NRF2. Activation of NRF2 with quercetin or by oxidative stress reduced expression of ITPR3 and calcium signaling in NHC cells; quercetin also reduced secretion by bile duct units isolated from rats. Knockdown of NRF2 with small interfering RNAs restored expression and function of ITPR3 in NHC cells incubated with quercetin. Bile ducts from rats with cholestasis and patients with cholangiopathic disorders expressed higher levels of NRF2 and lower levels of ITPR3 than ducts from control rats or patients with other liver disorders. CONCLUSIONS: The transcription factor NRF2 binds to the promoter of ITPR3 to inhibit its expression in cholangiocytes, leading to reduced calcium signaling and bile duct secretion. This could be a mechanism by which oxidative stress inhibits these processes and contributes to cholangiopathies.


Assuntos
Ductos Biliares Intra-Hepáticos/metabolismo , Sinalização do Cálcio/genética , Células Epiteliais/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Fator 2 Relacionado a NF-E2/genética , Transdução de Sinais/genética , Animais , Ductos Biliares Intra-Hepáticos/citologia , Sinalização do Cálcio/fisiologia , Linhagem Celular , Células Epiteliais/citologia , Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genética , Ratos , Fatores de Transcrição/metabolismo
14.
Am J Pathol ; 185(7): 1859-66, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934614

RESUMO

Hepatic expression levels of CXCL12, a chemokine important in inflammatory and stem cell recruitment, and its receptor, C-X-C chemokine receptor 4, are increased during all forms of liver injury. CXCL12 is expressed by both parenchymal and nonparenchymal hepatic cells, and on the basis of immunohistochemistry, biliary epithelial cells (BECs) are thought to be a predominant source of hepatic CXCL12, thereby promoting periportal recruitment of C-X-C chemokine receptor 4-expressing lymphocytes. Our study aims to show that BECs may, in fact, not be the predominant source of hepatic CXCL12. We measured CXCL12 secretion and expression from human and murine BECs using enzyme-linked immunosorbent assay and Western blot analysis from cell culture supernatants and whole cell lysates, respectively, whereas CXCL12 expression in murine livers was analyzed in a Cxcl12-Gfp reporter mouse. Cell culture supernatants and whole cell lysates from BECs failed to demonstrate their expression of CXCL12. Furthermore, we confirmed these results with a Cxcl12-Gfp reporter mouse in which green fluorescent protein expression is notably absent from BECs. Interestingly, on the basis of green fluorescent protein expression, we demonstrate a population of CXCL12-expressing cells within the portal tract that are distinct, yet intimately associated with BECs. These findings indicate that BECs are not a predominant source of CXCL12.


Assuntos
Quimiocina CXCL12/metabolismo , Células Epiteliais/metabolismo , Fígado/metabolismo , Animais , Ductos Biliares Intra-Hepáticos/citologia , Ductos Biliares Intra-Hepáticos/metabolismo , Linhagem Celular , Quimiocina CXCL12/genética , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Genes Reporter , Humanos , Fígado/citologia , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão
15.
Hepatology ; 62(5): 1551-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26199136

RESUMO

UNLABELLED: Cystic fibrosis-associated liver disease is a chronic cholangiopathy that negatively affects the quality of life of cystic fibrosis patients. In addition to reducing biliary chloride and bicarbonate secretion, up-regulation of toll-like receptor 4/nuclear factor kappa light-chain-enhancer of activated B cells (NF-κB)-dependent immune mechanisms plays a major role in the pathogenesis of cystic fibrosis-associated liver disease and may represent a therapeutic target. Nuclear receptors are transcription factors that regulate several intracellular functions. Some nuclear receptors, including peroxisome proliferator-activated receptor-γ (PPAR-γ), may counterregulate inflammation in a tissue-specific manner. In this study, we explored the anti-inflammatory effect of PPAR-γ stimulation in vivo in cystic fibrosis transmembrane conductance regulator (Cftr) knockout mice exposed to dextran sodium sulfate and in vitro in primary cholangiocytes isolated from wild-type and from Cftr-knockout mice exposed to lipopolysaccharide. We found that in CFTR-defective biliary epithelium expression of PPAR-γ is increased but that this does not result in increased receptor activity because the availability of bioactive ligands is reduced. Exogenous administration of synthetic agonists of PPAR-γ (pioglitazone and rosiglitazone) up-regulates PPAR-γ-dependent genes, while inhibiting the activation of NF-κB and the secretion of proinflammatory cytokines (lipopolysaccharide-induced CXC chemokine, monocyte chemotactic protein-1, macrophage inflammatory protein-2, granulocyte colony-stimulating factor, keratinocyte chemoattractant) in response to lipopolysaccharide. PPAR-γ agonists modulate NF-κB-dependent inflammation by up-regulating nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha, a negative regulator of NF-κB. Stimulation of PPAR-γ in vivo (rosiglitazone) significantly attenuates biliary damage and inflammation in Cftr-knockout mice exposed to a dextran sodium sulfate-induced portal endotoxemia. CONCLUSION: These studies unravel a novel function of PPAR-γ in controlling biliary epithelium inflammation and suggest that impaired activation of PPAR-γ contributes to the chronic inflammatory state of CFTR-defective cholangiocytes.


Assuntos
Colangite/etiologia , Fibrose Cística/patologia , NF-kappa B/fisiologia , PPAR gama/fisiologia , Animais , Células Cultivadas , Citocinas/biossíntese , Epitélio/metabolismo , Proteínas I-kappa B/fisiologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Inibidor de NF-kappaB alfa , PPAR gama/agonistas
16.
Hepatology ; 62(6): 1828-39, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26313562

RESUMO

UNLABELLED: Polycystin-2 (PC2 or TRPPC2), a member of the transient receptor potential channel family, is a nonselective calcium channel. Mutations in PC2 are associated with polycystic liver diseases. PC2-defective cholangiocytes show increased production of cyclic adenosine monophosphate, protein kinase A-dependent activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, hypoxia-inducible factor 1α (HIF-1α)-mediated vascular endothelial growth factor (VEGF) production, and stimulation of cyst growth and progression. Activation of the ERK/HIF-1α/VEGF pathway in cholangiocytes plays a key role during repair from biliary damage. We hypothesized that PC2 levels are modulated during biliary damage/repair, resulting in activation of the ERK/HIF-1α/VEGF pathway. PC2 protein expression, but not its gene expression, was significantly reduced in mouse livers with biliary damage (Mdr2(-/-) knockout, bile duct ligation, 3,5-diethoxycarbonyl-1,4-dihydrocollidine treatment). Treatment of cholangiocytes with proinflammatory cytokines, nitric oxide donors, and endoplasmic reticulum stressors increased ERK1/2 phosphorylation, HIF-1α transcriptional activity, secretion of VEGF, and VEGF receptor type 2 phosphorylation and down-regulated PC2 protein expression without affecting PC2 gene expression. Expression of homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain member 1 protein and NEK, ubiquitin-like proteins that promote proteosomal PC2 degradation, was increased. Pretreatment with the proteasome inhibitor MG-132 restored the expression of PC2 in cells treated with cytokines but not in cells treated with nitric oxide donors or with endoplasmic reticulum stressors. In these conditions, PC2 degradation was instead inhibited by interfering with the autophagy pathway. Treatment of 3,5-diethoxycarbonyl-1,4-dihydrocollidine mice and of Mdr2(-/-) mice with the proteasome inhibitor bortezomib restored PC2 expression and significantly reduced the ductular reaction, fibrosis, and phosphorylated ERK1/2. CONCLUSION: In response to biliary damage, PC2 expression is modulated posttranslationally by the proteasome or the autophagy pathway, and PC2 down-regulation is associated with activation of ERK1/2 and an increase of HIF-1α-mediated VEGF secretion; treatments able to restore PC2 expression and to reduce ductular reaction and fibrosis may represent a new therapeutic approach in biliary diseases.


Assuntos
Ductos Biliares/citologia , Colestase/metabolismo , Células Epiteliais/fisiologia , Processamento de Proteína Pós-Traducional , Canais de Cátion TRPP/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL
17.
Hepatology ; 58(5): 1713-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23744610

RESUMO

UNLABELLED: Genetically determined loss of fibrocystin function causes congenital hepatic fibrosis (CHF), Caroli disease (CD), and autosomal recessive polycystic kidney disease (ARPKD). Cystic dysplasia of the intrahepatic bile ducts and progressive portal fibrosis characterize liver pathology in CHF/CD. At a cellular level, several functional morphological and signaling changes have been reported including increased levels of 3'-5'-cyclic adenosine monophosphate (cAMP). In this study we addressed the relationships between increased cAMP and ß-catenin. In cholangiocytes isolated and cultured from Pkhd1(del4/del4) mice, stimulation of cAMP/PKA signaling (forskolin 10 µM) stimulated Ser(675) -phosphorylation of ß-catenin, its nuclear localization, and its transcriptional activity (western blot and TOP flash assay, respectively) along with a down-regulation of E-cadherin expression (immunocytochemistry and western blot); these changes were inhibited by the PKA blocker, PKI (1 µM). The Rho-GTPase, Rac-1, was also significantly activated by cAMP in Pkhd1(del4/del4) cholangiocytes. Rac-1 inhibition blocked cAMP-dependent nuclear translocation and transcriptional activity of pSer(675) -ß-catenin. Cell migration (Boyden chambers) was significantly higher in cholangiocytes obtained from Pkhd1(del4/del4) and was inhibited by: (1) PKI, (2) silencing ß-catenin (siRNA), and (3) the Rac-1 inhibitor NSC 23766. CONCLUSION: These data show that in fibrocystin-defective cholangiocytes, cAMP/PKA signaling stimulates pSer(675) -phosphorylation of ß-catenin and Rac-1 activity. In the presence of activated Rac-1, pSer(675) -ß-catenin is translocated to the nucleus, becomes transcriptionally active, and is responsible for increased motility of Pkhd1(del4/del4) cholangiocytes. ß-Catenin-dependent changes in cell motility may be central to the pathogenesis of the disease and represent a potential therapeutic target.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Doenças Genéticas Inatas/etiologia , Cirrose Hepática/etiologia , Transdução de Sinais , beta Catenina/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Ductos Biliares/citologia , Movimento Celular , AMP Cíclico/fisiologia , Modelos Animais de Doenças , Doenças Genéticas Inatas/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/fisiologia , Receptores de Superfície Celular/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia
18.
Hepatology ; 58(3): 1042-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23505219

RESUMO

UNLABELLED: Cholangiocarcinoma (CCA) is characterized by an abundant stromal reaction. Cancer-associated fibroblasts (CAFs) are pivotal in tumor growth and invasiveness and represent a potential therapeutic target. To understand the mechanisms leading to CAF recruitment in CCA, we studied (1) expression of epithelial-mesenchymal transition (EMT) in surgical CCA specimens and CCA cells, (2) lineage tracking of an enhanced green fluorescent protein (EGFP)-expressing human male CCA cell line (EGI-1) after xenotransplantation into severe-combined-immunodeficient mice, (3) expression of platelet-derived growth factors (PDGFs) and their receptors in vivo and in vitro, (4) secretion of PDGFs by CCA cells, (5) the role of PDGF-D in fibroblast recruitment in vitro, and (6) downstream effectors of PDGF-D signaling. CCA cells expressed several EMT biomarkers, but not alpha smooth muscle actin (α-SMA). Xenotransplanted CCA masses were surrounded and infiltrated by α-SMA-expressing CAFs, which were negative for EGFP and the human Y-probe, but positive for the murine Y-probe. CCA cells were strongly immunoreactive for PDGF-A and -D, whereas CAFs expressed PDGF receptor (PDGFR)ß. PDGF-D, a PDGFRß agonist, was exclusively secreted by cultured CCA cells. Fibroblast migration was potently induced by PDGF-D and CCA conditioned medium and was significantly inhibited by PDGFRß blockade with Imatinib and by silencing PDGF-D expression in CCA cells. In fibroblasts, PDGF-D activated the Rac1 and Cdc42 Rho GTPases and c-Jun N-terminal kinase (JNK). Selective inhibition of Rho GTPases (particularly Rac1) and of JNK strongly reduced PDGF-D-induced fibroblast migration. CONCLUSION: CCA cells express several mesenchymal markers, but do not transdifferentiate into CAFs. Instead, CCA cells recruit CAFs by secreting PDGF-D, which stimulates fibroblast migration through PDGFRß and Rho GTPase and JNK activation. Targeting tumor or stroma interactions with inhibitors of the PDGF-D pathway may offer a novel therapeutic approach.


Assuntos
Neoplasias dos Ductos Biliares/fisiopatologia , Ductos Biliares Intra-Hepáticos , Movimento Celular/fisiologia , Colangiocarcinoma/fisiopatologia , Fibroblastos/patologia , Linfocinas/fisiologia , Fator de Crescimento Derivado de Plaquetas/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Animais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal/fisiologia , Xenoenxertos , Humanos , Mesilato de Imatinib , Técnicas In Vitro , Masculino , Camundongos , Camundongos SCID , Piperazinas/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/fisiologia
19.
J Hepatol ; 59(1): 124-30, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23500150

RESUMO

BACKGROUND & AIMS: Repair from biliary damages requires the biliary specification of hepatic progenitor cells and the remodeling of ductular reactive structures into branching biliary tubules. We hypothesized that the morphogenetic role of Notch signaling is maintained during the repair process and have addressed this hypothesis using pharmacologic and genetic models of defective Notch signaling. METHODS: Treatment with DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) or ANIT (alpha-naphthyl-isothiocyanate) was used to induce biliary damage in wild type mice and in mice with a liver specific defect in the Notch-2 receptor (Notch-2-cKO) or in RPB-Jk. Hepatic progenitor cells, ductular reaction, and mature ductules were quantified using K19 and SOX-9. RESULTS: In DDC treated wild type mice, pharmacologic Notch inhibition with dibenzazepine decreased the number of both ductular reaction and hepatic progenitor cells. Notch-2-cKO mice treated with DDC or ANIT accumulated hepatic progenitor cells that failed to progress into mature ducts. In RBP-Jk-cKO mice, mature ducts and hepatic progenitor cells were both significantly reduced with respect to similarly treated wild type mice. The mouse progenitor cell line BMOL cultured on matrigel, formed a tubular network allowing the study of tubule formation in vitro; γ-secretase inhibitor treatment and siRNAs silencing of Notch-1, Notch-2 or Jagged-1 significantly reduced both the length and number of tubular branches. CONCLUSIONS: These data demonstrate that Notch signaling plays an essential role in biliary repair. Lack of Notch-2 prevents biliary tubule formation, both in vivo and in vitro. Lack of RBP-Jk inhibits the generation of biliary-committed precursors and tubule formation.


Assuntos
Ductos Biliares Intra-Hepáticos/lesões , Ductos Biliares Intra-Hepáticos/fisiopatologia , Receptor Notch2/fisiologia , 1-Naftilisotiocianato/toxicidade , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Ductos Biliares Intra-Hepáticos/patologia , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/fisiologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/deficiência , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteína Jagged-1 , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/fisiologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese/efeitos dos fármacos , Morfogênese/fisiologia , Piridinas/toxicidade , RNA Interferente Pequeno/genética , Receptor Notch2/deficiência , Receptor Notch2/genética , Proteínas Serrate-Jagged , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Células-Tronco/fisiologia
20.
Hepatology ; 55(3): 856-68, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21987453

RESUMO

UNLABELLED: Mutations in polycystins (PC1 or PC2/TRPP2) cause progressive polycystic liver disease (PLD). In PC2-defective mice, cyclic 3',5'-adenosine monophosphate/ protein kinase A (cAMP/PKA)-dependent activation of extracellular signal-regulated kinase/ mammalian target of rapamycin (ERK-mTOR) signaling stimulates cyst growth. We investigated the mechanisms connecting PC2 dysfunction to altered Ca(2+) and cAMP production and inappropriate ERK signaling in PC2-defective cholangiocytes. Cystic cholangiocytes were isolated from PC2 conditional-KO (knockout) mice (Pkd2(flox/-) :pCxCreER™; hence, called Pkd2KO) and compared to cholangiocytes from wild-type mice (WT). Our results showed that, compared to WT cells, in PC2-defective cholangiocytes (Pkd2KO), cytoplasmic and ER-Ca(2+) (measured with Fura-2 and Mag-Fluo4) levels are decreased and store-operated Ca(2+) entry (SOCE) is inhibited, whereas the expression of Ca(2+) -sensor stromal interaction molecule 1 (STIM1) and store-operated Ca(2+) channels (e.g., the Orai1 channel) are unchanged. In Pkd2KO cells, ER-Ca(2+) depletion increases cAMP and PKA-dependent ERK1/2 activation and both are inhibited by STIM1 inhibitors or by silencing of adenylyl cyclase type 6 (AC6). CONCLUSION: These data suggest that PC2 plays a key role in SOCE activation and inhibits the STIM-dependent activation of AC6 by ER Ca(2+) depletion. In PC2-defective cells, the interaction of STIM-1 with Orai channels is uncoupled, whereas coupling to AC6 is maximized. The resulting overproduction of cAMP, in turn, potently activates the PKA/ERK pathway. PLD, because of PC2 deficiency, represents the first example of human disease linked to the inappropriate activation of store-operated cAMP production.


Assuntos
Ductos Biliares/citologia , Ductos Biliares/metabolismo , Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Canais de Cátion TRPP/deficiência , Adenilil Ciclases/metabolismo , Animais , Canais de Cálcio , Sinalização do Cálcio/fisiologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Homeostase , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Fosforilação , Transdução de Sinais/fisiologia , Molécula 1 de Interação Estromal , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA