Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Phycol ; 60(3): 624-638, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38163284

RESUMO

Polyphosphates (polyP) are ubiquitous biomolecules that play a multitude of physiological roles in many cells. We have studied the presence and role of polyP in a unicellular alga, the freshwater diatom Achnanthidium minutissimum. This diatom stores up to 2.0 pg·cell-1 of polyP, with chain lengths ranging from 130 to 500 inorganic phosphate units (Pi). We applied energy dispersive X-ray spectroscopy, Raman/fluorescence microscopy, and biochemical assays to localize and characterize the intracellular polyP granules that were present in large apical vacuoles. We investigated the fate of polyP in axenic A. minutissimum cells grown under phosphorus (P), replete (P(+)), or P deplete (P(-)) cultivation conditions and observed that in the absence of exogenous P, A. minutissimum rapidly utilizes their internal polyP reserves, maintaining their intrinsic growth rates for up to 8 days. PolyP-depleted A. minutissimum cells rapidly took up exogenous P a few hours after Pi resupply and generated polyP three times faster than cells that were not initially subjected to P limitation. Accordingly, we propose that A. minutissimum deploys a succession of acclimation strategies regarding polyP dynamics where the production or consumption of polyP plays a central role in the homeostasis of the diatom.


Assuntos
Diatomáceas , Fósforo , Polifosfatos , Diatomáceas/metabolismo , Diatomáceas/crescimento & desenvolvimento , Polifosfatos/metabolismo , Polifosfatos/farmacologia , Fósforo/metabolismo , Fósforo/farmacologia , Espectrometria por Raios X , Água Doce , Microscopia de Fluorescência , Análise Espectral Raman
2.
Molecules ; 29(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338334

RESUMO

Microbial symbionts of plants constitute promising sources of biocontrol organisms to fight plant pathogens. Bacillus sp. G2112 and Pseudomonas sp. G124 isolated from cucumber (Cucumis sativus) leaves inhibited the plant pathogens Erwinia and Fusarium. When Bacillus sp. G2112 and Pseudomonas sp. G124 were co-cultivated, a red halo appeared around Bacillus sp. G2112 colonies. Metabolite profiling using liquid chromatography coupled to UV and mass spectrometry revealed that the antibiotic phenazine-1-carboxylic acid (PCA) released by Pseudomonas sp. G124 was transformed by Bacillus sp. G2112 to red pigments. In the presence of PCA (>40 µg/mL), Bacillus sp. G2112 could not grow. However, already-grown Bacillus sp. G2112 (OD600 > 1.0) survived PCA treatment, converting it to red pigments. These pigments were purified by reverse-phase chromatography, and identified by high-resolution mass spectrometry, NMR, and chemical degradation as unprecedented 5N-glucosylated phenazine derivatives: 7-imino-5N-(1'ß-D-glucopyranosyl)-5,7-dihydrophenazine-1-carboxylic acid and 3-imino-5N-(1'ß-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid. 3-imino-5N-(1'ß-D-glucopyranosyl)-3,5-dihydrophenazine-1-carboxylic acid did not inhibit Bacillus sp. G2112, proving that the observed modification constitutes a resistance mechanism. The coexistence of microorganisms-especially under natural/field conditions-calls for such adaptations, such as PCA inactivation, but these can weaken the potential of the producing organism against pathogens and should be considered during the development of biocontrol strategies.


Assuntos
Bacillus , Bacillus/metabolismo , Pseudomonas/metabolismo , Fenazinas/farmacologia , Fenazinas/química , Ácidos Carboxílicos/farmacologia , Ácidos Carboxílicos/metabolismo
3.
BMC Microbiol ; 22(1): 227, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171563

RESUMO

BACKGROUND: Environmental contamination from synthetic plastics and their additives is a widespread problem. Phthalate esters are a class of refractory synthetic organic compounds which are widely used in plastics, coatings, and for several industrial applications such as packaging, pharmaceuticals, and/or paints. They are released into the environment during production, use and disposal, and some of them are potential mutagens and carcinogens. Isophthalate (1,3-benzenedicarboxylic acid) is a synthetic chemical that is globally produced at a million-ton scale for industrial applications and is considered a priority pollutant. Here we describe the biochemical characterization of an enzyme involved in anaerobic degradation of isophthalate by the syntrophically fermenting bacterium Syntrophorhabdus aromaticivorans strain UI that activate isophthalate to isophthalyl-CoA followed by its decarboxylation to benzoyl-CoA. RESULTS: Isophthalate:Coenzyme A ligase (IPCL, AMP-forming) that activates isophthalate to isophthalyl-CoA was heterologously expressed in E. coli (49.6 kDa) for biochemical characterization. IPCL is homologous to phenylacetate-CoA ligase that belongs to the family of ligases that form carbon-sulfur bonds. In the presence of coenzyme A, Mg2+ and ATP, IPCL converts isophthalate to isophthalyl-CoA, AMP and pyrophosphate (PPi). The enzyme was specifically induced after anaerobic growth of S. aromaticivorans in a medium containing isophthalate as the sole carbon source. Therefore, IPCL exhibited high substrate specificity and affinity towards isophthalate. Only substrates that are structurally related to isophthalate, such as glutarate and 3-hydroxybenzoate, could be partially converted to the respective coenzyme A esters. Notably, no activity could be measured with substrates such as phthalate, terephthalate and benzoate. Acetyl-CoA or succinyl-CoA did not serve as CoA donors. The enzyme has a theoretical pI of 6.8 and exhibited optimal activity between pH 7.0 to 7.5. The optimal temperature was between 25 °C and 37 °C. Denaturation temperature (Tm) of IPCL was found to be at about 63 °C. The apparent KM values for isophthalate, CoA, and ATP were 409 µM, 642 µM, and 3580 µM, respectively. Although S. aromaticivorans is a strictly anaerobic bacterium, the enzyme was found to be oxygen-insensitive and catalysed isophthalyl-CoA formation under both anoxic and oxic conditions. CONCLUSION: We have successfully cloned the ipcl gene, expressed and characterized the corresponding IPCL enzyme, which plays a key role in isophthalate activation that initiates its activation and further degradation by S. aromaticivorans. Its biochemical characterization represents an important step in the elucidation of the complete degradation pathway of isophthalate.


Assuntos
Difosfatos , Poluentes Ambientais , Acetilcoenzima A/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Anaerobiose , Composição de Bases , Benzoatos/metabolismo , Carbono , Carcinógenos , Coenzima A/metabolismo , Coenzima A Ligases , Escherichia coli/metabolismo , Glutaratos , Hidroxibenzoatos , Mutagênicos , Oxigênio , Fenilacetatos/metabolismo , Ácidos Ftálicos , Filogenia , Plásticos , RNA Ribossômico 16S , Análise de Sequência de DNA , Enxofre , Xenobióticos
4.
BMC Microbiol ; 21(1): 50, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593288

RESUMO

BACKGROUND: Degradation of acetone by aerobic and nitrate-reducing bacteria can proceed via carboxylation to acetoacetate and subsequent thiolytic cleavage to two acetyl residues. A different strategy was identified in the sulfate-reducing bacterium Desulfococcus biacutus that involves formylation of acetone to 2-hydroxyisobutyryl-CoA. RESULTS: Utilization of short-chain ketones (acetone, butanone, 2-pentanone and 3-pentanone) and isopropanol by the sulfate reducer Desulfosarcina cetonica was investigated by differential proteome analyses and enzyme assays. Two-dimensional protein gel electrophoresis indicated that D. cetonica during growth with acetone expresses enzymes homologous to those described for Desulfococcus biacutus: a thiamine diphosphate (TDP)-requiring enzyme, two subunits of a B12-dependent mutase, and a NAD+-dependent dehydrogenase. Total proteomics of cell-free extracts confirmed these results and identified several additional ketone-inducible proteins. Acetone is activated, most likely mediated by the TDP-dependent enzyme, to a branched-chain CoA-ester, 2-hydroxyisobutyryl-CoA. This compound is linearized to 3-hydroxybutyryl-CoA by a coenzyme B12-dependent mutase followed by oxidation to acetoacetyl-CoA by a dehydrogenase. Proteomic analysis of isopropanol- and butanone-grown cells revealed the expression of a set of enzymes identical to that expressed during growth with acetone. Enzyme assays with cell-free extract of isopropanol- and butanone-grown cells support a B12-dependent isomerization. After growth with 2-pentanone or 3-pentanone, similar protein patterns were observed in cell-free extracts as those found after growth with acetone. CONCLUSIONS: According to these results, butanone and isopropanol, as well as the two pentanone isomers, are degraded by the same enzymes that are used also in acetone degradation. Our results indicate that the degradation of several short-chain ketones appears to be initiated by TDP-dependent formylation in sulfate-reducing bacteria.


Assuntos
2-Propanol/metabolismo , Acetona/metabolismo , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Cetonas/metabolismo , Sulfatos/metabolismo , 2-Propanol/farmacologia , Deltaproteobacteria/efeitos dos fármacos , Deltaproteobacteria/crescimento & desenvolvimento , Cetonas/química , Oxirredução , Proteoma , Proteômica/métodos
5.
Chembiochem ; 21(21): 3151-3157, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32585063

RESUMO

When Streptomyces violaceoruber grows together with Streptomyces sp. MG7-G1, it reacts with strongly induced droplet production on its aerial mycelium. Initially the metabolite profile of droplets from S. violaceoruber in co-culture with Streptomyces sp. MG7-G1 was compared to samples from S. violaceoruber in single-culture by using high-performance liquid chromatography-mass spectrometry (HPLC-MS). Then, the exudate from agar plates of co-cultures and single cultures (after freezing and thawing) was also analysed. Several compounds were only observed when S. violaceoruber was grown in co-culture. Based on their high-resolution ESI mass spectra and their comparable retention times to the calcium-dependent antibiotics (CDAs) produced by S. violaceoruber, the new compounds were suspected to be deacylated calcium-dependent antibiotics (daCDAs), lacking the 2,3-epoxyhexanoyl residue of CDAs. This was verified by detailed analysis of the MS/MS spectra of the daCDAs in comparison to the CDAs. The major CDA compounds present in calcium ion-supplemented agar medium of co-cultures were daCDAs, thus suggesting that Streptomyces sp. MG7-G1 expresses a deacylase that degrades CDAs.


Assuntos
Antibacterianos/metabolismo , Cálcio/metabolismo , Técnicas de Cocultura , Streptomyces/química , Acilação , Antibacterianos/química , Cálcio/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Conformação Molecular , Streptomyces/metabolismo
6.
Nature ; 507(7490): 114-7, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24463506

RESUMO

Sulphoquinovose (SQ, 6-deoxy-6-sulphoglucose) has been known for 50 years as the polar headgroup of the plant sulpholipid in the photosynthetic membranes of all higher plants, mosses, ferns, algae and most photosynthetic bacteria. It is also found in some non-photosynthetic bacteria, and SQ is part of the surface layer of some Archaea. The estimated annual production of SQ is 10,000,000,000 tonnes (10 petagrams), thus it comprises a major portion of the organo-sulphur in nature, where SQ is degraded by bacteria. However, despite evidence for at least three different degradative pathways in bacteria, no enzymic reaction or gene in any pathway has been defined, although a sulphoglycolytic pathway has been proposed. Here we show that Escherichia coli K-12, the most widely studied prokaryotic model organism, performs sulphoglycolysis, in addition to standard glycolysis. SQ is catabolised through four newly discovered reactions that we established using purified, heterologously expressed enzymes: SQ isomerase, 6-deoxy-6-sulphofructose (SF) kinase, 6-deoxy-6-sulphofructose-1-phosphate (SFP) aldolase, and 3-sulpholactaldehyde (SLA) reductase. The enzymes are encoded in a ten-gene cluster, which probably also encodes regulation, transport and degradation of the whole sulpholipid; the gene cluster is present in almost all (>91%) available E. coli genomes, and is widespread in Enterobacteriaceae. The pathway yields dihydroxyacetone phosphate (DHAP), which powers energy conservation and growth of E. coli, and the sulphonate product 2,3-dihydroxypropane-1-sulphonate (DHPS), which is excreted. DHPS is mineralized by other bacteria, thus closing the sulphur cycle within a bacterial community.


Assuntos
Escherichia coli K12/metabolismo , Glicólise , Enxofre/metabolismo , Aldeído Liases/genética , Aldeído Liases/metabolismo , Alcanossulfonatos/metabolismo , Transporte Biológico , Fosfato de Di-Hidroxiacetona/metabolismo , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Escherichia coli K12/enzimologia , Escherichia coli K12/genética , Escherichia coli K12/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Bacterianos/genética , Glicólise/genética , Isomerases/genética , Isomerases/metabolismo , Metilglucosídeos/metabolismo , Família Multigênica/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo
7.
Chemistry ; 24(17): 4445-4452, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29356159

RESUMO

The specialized, fungal pathogen Escovopsis weberi threatens the mutualistic symbiosis between leaf-cutting ants and their garden fungus (Leucoagaricus gongylophorus). Because E. weberi can overwhelm L. gongylophorus without direct contact, it was suspected to secrete toxins. Using NMR and mass spectrometry, we identified several secondary metabolites produced by E. weberi. E. weberi produces five shearinine-type indole triterpenoids including two novel derivatives, shearinine L and shearinine M, as well as the polyketides, emodin and cycloarthropsone. Cycloarthropsone and emodin strongly inhibited the growth of the garden fungus L. gongylophorous at 0.8 and 0.7 µmol, respectively. Emodin was also active against Streptomyces microbial symbionts (0.3 µmol) of leaf-cutting ants. Shearinine L instead did not affect the growth of L. gongylophorus in agar diffusion assays. However, in dual choice behavioral assays Acromyrmex octospinosus ants clearly avoided substrate treated with shearinine L for the garden fungus after a 2 d learning period, indicating that the ants quickly learn to avoid shearinine L.


Assuntos
Agaricales/fisiologia , Formigas/fisiologia , Hypocreales/fisiologia , Alcaloides Indólicos/metabolismo , Metaboloma/fisiologia , Policetídeos/metabolismo , Animais , Emodina/química , Emodina/metabolismo , Humanos , Alcaloides Indólicos/química , Policetídeos/química , Metabolismo Secundário , Simbiose
8.
Proc Natl Acad Sci U S A ; 112(31): E4298-305, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195800

RESUMO

Sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose) is the polar head group of the plant sulfolipid SQ-diacylglycerol, and SQ comprises a major proportion of the organosulfur in nature, where it is degraded by bacteria. A first degradation pathway for SQ has been demonstrated recently, a "sulfoglycolytic" pathway, in addition to the classical glycolytic (Embden-Meyerhof) pathway in Escherichia coli K-12; half of the carbon of SQ is abstracted as dihydroxyacetonephosphate (DHAP) and used for growth, whereas a C3-organosulfonate, 2,3-dihydroxypropane sulfonate (DHPS), is excreted. The environmental isolate Pseudomonas putida SQ1 is also able to use SQ for growth, and excretes a different C3-organosulfonate, 3-sulfolactate (SL). In this study, we revealed the catabolic pathway for SQ in P. putida SQ1 through differential proteomics and transcriptional analyses, by in vitro reconstitution of the complete pathway by five heterologously produced enzymes, and by identification of all four organosulfonate intermediates. The pathway follows a reaction sequence analogous to the Entner-Doudoroff pathway for glucose-6-phosphate: It involves an NAD(+)-dependent SQ dehydrogenase, 6-deoxy-6-sulfogluconolactone (SGL) lactonase, 6-deoxy-6-sulfogluconate (SG) dehydratase, and 2-keto-3,6-dideoxy-6-sulfogluconate (KDSG) aldolase. The aldolase reaction yields pyruvate, which supports growth of P. putida, and 3-sulfolactaldehyde (SLA), which is oxidized to SL by an NAD(P)(+)-dependent SLA dehydrogenase. All five enzymes are encoded in a single gene cluster that includes, for example, genes for transport and regulation. Homologous gene clusters were found in genomes of other P. putida strains, in other gamma-Proteobacteria, and in beta- and alpha-Proteobacteria, for example, in genomes of Enterobacteria, Vibrio, and Halomonas species, and in typical soil bacteria, such as Burkholderia, Herbaspirillum, and Rhizobium.


Assuntos
Redes e Vias Metabólicas , Metilglucosídeos/metabolismo , Pseudomonas putida/metabolismo , Eletroforese em Gel de Poliacrilamida , Cinética , Lactatos/metabolismo , Espectrometria de Massas , Metaboloma , Metilglucosídeos/química , Família Multigênica , NAD/metabolismo , Oxirredutases/metabolismo , Proteômica , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Pseudomonas putida/crescimento & desenvolvimento , Proteínas Recombinantes/metabolismo , Transcrição Gênica
9.
J Chem Ecol ; 43(8): 806-816, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28735421

RESUMO

Streptomyces violaceoruber grown in co-culture with Streptomyces aburaviensis produces an about 17-fold higher volume of droplets on its aerial mycelium than in single-culture. Physical separation of the Streptomyces strains by either a plastic barrier or by a dialysis membrane, which allowed communication only by the exchange of volatile compounds or diffusible compounds in the medium, respectively, still resulted in enhanced droplet formation. The application of molecular sieves to bioassays resulted in the attenuation of the droplet-inducing effect of S. aburaviensis indicating the absorption of the compound. 1H-NMR analysis of molecular-sieve extracts and the selective indophenol-blue reaction revealed that the volatile droplet-inducing compound is ammonia. The external supply of ammonia in biologically relevant concentrations of ≥8 mM enhanced droplet formation in S. violaceoruber in a similar way to S. aburaviensis. Ammonia appears to trigger droplet production in many Streptomyces strains because four out of six Streptomyces strains exposed to ammonia exhibited induced droplet production.


Assuntos
Amônia/metabolismo , Gotículas Lipídicas/química , Streptomyces/química , Amônia/análise , Amônia/química , Bioensaio , Difusão , Gases/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Compostos Orgânicos/química , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo
10.
Environ Microbiol ; 18(9): 3175-88, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27387486

RESUMO

The pathway of anaerobic degradation of o-phthalate was studied in the nitrate-reducing bacterium Azoarcus sp. strain PA01. Differential two-dimensional protein gel profiling allowed the identification of specifically induced proteins in o-phthalate-grown compared to benzoate-grown cells. The genes encoding o-phthalate-induced proteins were found in a 9.9 kb gene cluster in the genome of Azoarcus sp. strain PA01. The o-phthalate-induced gene cluster codes for proteins homologous to a dicarboxylic acid transporter, putative CoA-transferases and a UbiD-like decarboxylase that were assigned to be specifically involved in the initial steps of anaerobic o-phthalate degradation. We propose that o-phthalate is first activated to o-phthalyl-CoA by a putative succinyl-CoA-dependent succinyl-CoA:o-phthalate CoA-transferase, and o-phthalyl-CoA is subsequently decarboxylated to benzoyl-CoA by a putative o-phthalyl-CoA decarboxylase. Results from in vitro enzyme assays with cell-free extracts of o-phthalate-grown cells demonstrated the formation of o-phthalyl-CoA from o-phthalate and succinyl-CoA as CoA donor, and its subsequent decarboxylation to benzoyl-CoA. The putative succinyl-CoA:o-phthalate CoA-transferase showed high substrate specificity for o-phthalate and did not accept isophthalate, terephthalate or 3-fluoro-o-phthalate whereas the putative o-phthalyl-CoA decarboxylase converted fluoro-o-phthalyl-CoA to fluoro-benzoyl-CoA. No decarboxylase activity was observed with isophthalyl-CoA or terephthalyl-CoA. Both enzyme activities were oxygen-insensitive and inducible only after growth with o-phthalate. Further degradation of benzoyl-CoA proceeds analogous to the well-established anaerobic benzoyl-CoA degradation pathway of nitrate-reducing bacteria.


Assuntos
Acil Coenzima A/metabolismo , Azoarcus/metabolismo , Proteínas de Bactérias/metabolismo , Nitratos/metabolismo , Ácidos Ftálicos/metabolismo , Acil Coenzima A/química , Acil Coenzima A/genética , Anaerobiose , Azoarcus/química , Azoarcus/enzimologia , Azoarcus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Benzoatos/metabolismo , Família Multigênica , Oxirredução , Ácidos Ftálicos/química , Especificidade por Substrato
11.
Chemistry ; 21(16): 6027-32, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25760402

RESUMO

The bacterium Streptomyces coelicolor M145 reacts to transition-metal-ion stress with myriad growth responses, leading to different phenotypes. In particular, in the presence of Co(2+) ions (0.7 mM) S. coelicolor consistently produced a red phenotype. This phenotype, when compared to the wild type, differed strongly in its production of volatile compounds as well as high molecular weight secondary metabolites. LC-MS analysis revealed that in the red phenotype the production of the prodigiosins, undecylprodigiosin and streptorubin B, was strongly induced and, in addition, several intense signals appeared in the LC-MS chromatogram. Using LC-MS/MS and NMR spectroscopy, two new prodigiosin derivatives were identified, that is, coeligiosin A and B, which contained an additional undecylpyrrolyl side chain attached to the central carbon of the tripyrrole ring system of undecylprodigiosin or streptorubin B. This example demonstrates that environmental factors such as heavy metal ion stress can not only induce the production of otherwise not observed metabolites from so called sleeping genes but alter the products from well-studied biosynthetic pathways.


Assuntos
Antibacterianos/metabolismo , Cobalto/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/metabolismo , Streptomyces coelicolor/metabolismo
12.
J Ind Microbiol Biotechnol ; 41(2): 251-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24258629

RESUMO

Since the discovery of the streptomycin produced by Streptomyces griseus in the middle of the last century, members of this bacterial genus have been largely exploited for the production of secondary metabolites with wide uses in medicine and in agriculture. They have even been recognized as one of the most prolific producers of natural products among microorganisms. With the onset of the genomic era, it became evident that these microorganisms still represent a major source for the discovery of novel secondary metabolites. This was highlighted with the complete genome sequencing of Streptomyces coelicolor A3(2) which revealed an unexpected potential of this organism to synthesize natural products undetected until then by classical screening methods. Since then, analysis of sequenced genomes from numerous Streptomyces species has shown that a single species can carry more than 30 secondary metabolite gene clusters, reinforcing the idea that the biosynthetic potential of this bacterial genus is far from being fully exploited. This review highlights our knowledge on the potential of Streptomyces ambofaciens ATCC 23877 to synthesize natural products. This industrial strain was known for decades to only produce the drug spiramycin and another antibacterial compound, congocidine. Mining of its genome allowed the identification of 23 clusters potentially involved in the production of other secondary metabolites. Studies of some of these clusters resulted in the characterization of novel compounds and of previously known compounds but never characterized in this Streptomyces species. In addition, genome mining revealed that secondary metabolite gene clusters of phylogenetically closely related Streptomyces are mainly species-specific.


Assuntos
Produtos Biológicos/metabolismo , Genoma Bacteriano , Streptomyces/genética , Antibacterianos/biossíntese , Produtos Biológicos/química , Vias Biossintéticas/genética , Metabolismo Secundário/genética , Streptomyces/metabolismo
13.
Proc Natl Acad Sci U S A ; 108(5): 1955-60, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21245311

RESUMO

Leaf-cutting ants cultivate the fungus Leucoagaricus gongylophorus, which serves as a major food source. This symbiosis is threatened by microbial pathogens that can severely infect L. gongylophorus. Microbial symbionts of leaf-cutting ants, mainly Pseudonocardia and Streptomyces, support the ants in defending their fungus gardens against infections by supplying antimicrobial and antifungal compounds. The ecological role of microorganisms in the nests of leaf-cutting ants can only be addressed in detail if their secondary metabolites are known. Here, we use an approach for the rapid identification of established bioactive compounds from microorganisms in ecological contexts by combining phylogenetic data, database searches, and liquid chromatography electrospray ionisation high resolution mass spectrometry (LC-ESI-HR-MS) screening. Antimycins A(1)-A(4), valinomycins, and actinomycins were identified in this manner from Streptomyces symbionts of leaf-cutting ants. Matrix-assisted laser desorption ionization (MALDI) imaging revealed the distribution of valinomycin directly on the integument of Acromyrmex echinatior workers. Valinomycins and actinomycins were also directly identified in samples from the waste of A. echinatior and A. niger leaf-cutting ants, suggesting that the compounds exert their antimicrobial and antifungal potential in the nests of leaf-cutting ants. Strong synergistic effects of the secondary meta-bolites produced by ant-associated Streptomyces were observed in the agar diffusion assay against Escovopsis weberi. Actinomycins strongly inhibit soil bacteria as well as other Streptomyces and Pseudonocardia symbionts. The antifungal antimycins are not only active against pathogenic fungi but also the garden fungus L. gongylophorus itself. In conclusion, secondary metabolites of microbial symbionts of leaf-cutting ants contribute to shaping the microbial communities within the nests of leaf-cutting ants.


Assuntos
Formigas/fisiologia , Folhas de Planta , Simbiose , Animais , Anti-Infecciosos/farmacologia , Formigas/microbiologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Cromatografia Líquida , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray
14.
Chembiochem ; 14(16): 2169-78, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24106142

RESUMO

Ralfuranones are aryl-substituted furanone secondary metabolites of the Gram-negative plant pathogen Ralstonia solanacearum. New sulfur-containing ralfuranone derivatives were identified, including the methyl thioether-containing ralfuranone D. Isotopic labeling in vivo, as well as headspace analyses of volatiles from R. solanacearum liquid cultures, established a mechanism for the transfer of an intact methylthio group from L-methionine or α-keto-γ-methylthiobutyric acid. The methylthio acceptor molecule ralfuranone I, a previously postulated biosynthetic intermediate in ralfuranone biosynthesis, was isolated and characterized by NMR. The highly reactive Michael acceptor system of this intermediate readily reacts with various thiols, including glutathione.


Assuntos
Furanos/química , Ralstonia solanacearum/química , Sulfetos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Furanos/isolamento & purificação , Furanos/metabolismo , Técnicas de Silenciamento de Genes , Marcação por Isótopo , Plasmídeos/metabolismo , Ralstonia solanacearum/metabolismo , Enxofre/química , Enxofre/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
15.
Microorganisms ; 11(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110428

RESUMO

Rosenbergiella bacteria have been previously isolated predominantly from floral nectar and identified in metagenomic screenings as associated with bees. Here, we isolated three Rosenbergiella strains from the robust Australian stingless bee Tetragonula carbonaria sharing over 99.4% sequence similarity with Rosenbergiella strains isolated from floral nectar. The three Rosenbergiella strains (D21B, D08K, D15G) from T. carbonaria exhibited near-identical 16S rDNA. The genome of strain D21B was sequenced; its draft genome contains 3,294,717 bp, with a GC content of 47.38%. Genome annotation revealed 3236 protein-coding genes. The genome of D21B differs sufficiently from the closest related strain, Rosenbergiella epipactidis 2.1A, to constitute a new species. In contrast to R. epipactidis 2.1A, strain D21B produces the volatile 2-phenylethanol. The D21B genome contains a polyketide/non-ribosomal peptide gene cluster not present in any other Rosenbergiella draft genomes. Moreover, the Rosenbergiella strains isolated from T. carbonaria grew in a minimal medium without thiamine, but R. epipactidis 2.1A was thiamine-dependent. Strain D21B was named R. meliponini D21B, reflecting its origin from stingless bees. Rosenbergiella strains may contribute to the fitness of T. carbonaria.

16.
Insects ; 14(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37504595

RESUMO

Aphids are a ubiquitous group of pests in agriculture that cause serious losses. For sustainable aphid identification, it is necessary to develop a precise and fast aphid identification tool. A new simple chemotaxonomy approach to rapidly identify aphids was implemented. The method was calibrated in comparison to the established phylogenetic analysis. For chemotaxonomic analysis, aphids were crushed, their headspace compounds were collected through closed-loop stripping (CLS) and analysed using gas chromatography-mass spectrometry (GC-MS). GC-MS data were then subjected to a discriminant analysis using CAP12.exe software, which identified key biomarkers that distinguish aphid species. A dichotomous key taking into account the presence and absence of a set of species-specific biomarkers was derived from the discriminant analysis which enabled rapid and reliable identification of aphid species. As the method overcomes the limits of morphological identification, it works with aphids at all life stages and in both genders. Thus, our method enables entomologists to assign aphids to growth stages and identify the life history of the investigated aphids, i.e., the food plant(s) they fed on. Our experiments clearly showed that the method could be used as a software to automatically identify aphids.

17.
Chembiochem ; 13(11): 1635-44, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22753047

RESUMO

The volatiles released by several streptomycetes were collected by using a closed-loop stripping apparatus (CLSA) and analysed by GC-MS. The obtained headspace extracts of various species contained blastmycinone, a known degradation product of the fungicidal antibiotic, antimycin A(3b), and several unknown derivatives. The suggested structures of these compounds, based on their mass spectra and GC retention indices, were confirmed by comparison to synthetic reference samples. Additional compounds found in the headspace extracts were butenolides formed from the blastmycinones by elimination of the carboxylic acid moiety. Analysis of a gene knockout mutant in the antimycin biosynthetic gene cluster demonstrated that all blastmycinones and butenolides are formed via the antimycin biosynthetic pathway. The structural variation of the blastmycinones identified here is much larger than within the known antimycins, thus suggesting that several antimycin derivatives remain to be discovered.


Assuntos
4-Butirolactona/análogos & derivados , Antimicina A/análogos & derivados , Streptomyces/química , 4-Butirolactona/análise , 4-Butirolactona/síntese química , Antimicina A/biossíntese , Antimicina A/química , Antimicina A/metabolismo , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Streptomyces/genética , Streptomyces/metabolismo
18.
Proc Natl Acad Sci U S A ; 106(12): 4742-6, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19270078

RESUMO

Leaf-cutting ants such as Acromyrmex octospinosus live in obligate symbiosis with fungi of the genus Leucoagaricus, which they grow with harvested leaf material. The symbiotic fungi, in turn, serve as a major food source for the ants. This mutualistic relation is disturbed by the specialized pathogenic fungus Escovopsis sp., which can overcome Leucoagaricus sp. and thus destroy the ant colony. Microbial symbionts of leaf-cutting ants have been suggested to protect the fungus garden against Escovopsis by producing antifungal compounds [Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701-704.]. To date, however, the chemical nature of these compounds has remained elusive. We characterized 19 leaf-cutting ant-associated microorganisms (5 Pseudonocardia, 1 Dermacoccus, and 13 Streptomyces) from 3 Acromyrmex species, A. octospinosus, A. echinatior, and A. volcanus, using 16S-rDNA analysis. Because the strain Streptomyces sp. Ao10 proved highly active against the pathogen Escovopsis, we identified the molecular basis of its antifungal activity. Using bioassay-guided fractionation, high-resolution electrospray mass spectrometry (HR-ESI-MS), and UV spectroscopy, and comparing the results with an authentic standard, we were able identify candicidin macrolides. Candicidin macrolides are highly active against Escovopsis but do not significantly affect the growth of the symbiotic fungus. At least one of the microbial isolates from each of the 3 leaf-cutting ant species analyzed produced candicidin macrolides. This suggests that candicidins play an important role in protecting the fungus gardens of leaf-cutting ants against pathogenic fungi.


Assuntos
Formigas/microbiologia , Formigas/fisiologia , Candicidina/biossíntese , Comportamento Alimentar/fisiologia , Fungos/fisiologia , Folhas de Planta/parasitologia , Streptomyces/fisiologia , Animais , Antifúngicos/farmacologia , Formigas/efeitos dos fármacos , Candicidina/química , Candicidina/isolamento & purificação , Candicidina/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Fungos/efeitos dos fármacos , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Folhas de Planta/efeitos dos fármacos , Streptomyces/efeitos dos fármacos , Streptomyces/isolamento & purificação
19.
Antibiotics (Basel) ; 11(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36009926

RESUMO

Actinomycetes, most notably the genus Streptomyces, have great importance due to their role in the discovery of new natural products, especially for finding antimicrobial secondary metabolites that are useful in the medicinal science and biotechnology industries. In the current study, a genome-based evaluation of Streptomyces sp. isolate BR123 was analyzed to determine its biosynthetic potential, based on its in vitro antimicrobial activity against a broad range of microbial pathogens, including gram-positive and gram-negative bacteria and fungi. A draft genome sequence of 8.15 Mb of Streptomyces sp. isolate BR123 was attained, containing a GC content of 72.63% and 8103 protein coding genes. Many antimicrobial, antiparasitic, and anticancerous compounds were detected by the presence of multiple biosynthetic gene clusters, which was predicted by in silico analysis. A novel metabolite with a molecular mass of 1271.7773 in positive ion mode was detected through a high-performance liquid chromatography linked with mass spectrometry (HPLC-MS) analysis. In addition, another compound, meridamycin, was also identified through a HPLC-MS analysis. The current study reveals the biosynthetic potential of Streptomyces sp. isolate BR123, with respect to the synthesis of bioactive secondary metabolites through genomic and spectrometric analysis. Moreover, the comparative genome study compared the isolate BR123 with other Streptomyces strains, which may expand the knowledge concerning the mechanism involved in novel antimicrobial metabolite synthesis.

20.
J Biol Chem ; 285(29): 22495-504, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20430898

RESUMO

The thioesterase FlK from the fluoroacetate-producing Streptomyces cattleya catalyzes the hydrolysis of fluoroacetyl-coenzyme A. This provides an effective self-defense mechanism, preventing any fluoroacetyl-coenzyme A formed from being further metabolized to 4-hydroxy-trans-aconitate, a lethal inhibitor of the tricarboxylic acid cycle. Remarkably, FlK does not accept acetyl-coenzyme A as a substrate. Crystal structure analysis shows that FlK forms a dimer, in which each subunit adopts a hot dog fold as observed for type II thioesterases. Unlike other type II thioesterases, which invariably utilize either an aspartate or a glutamate as catalytic base, we show by site-directed mutagenesis and crystallography that FlK employs a catalytic triad composed of Thr(42), His(76), and a water molecule, analogous to the Ser/Cys-His-acid triad of type I thioesterases. Structural comparison of FlK complexed with various substrate analogues suggests that the interaction between the fluorine of the substrate and the side chain of Arg(120) located opposite to the catalytic triad is essential for correct coordination of the substrate at the active site and therefore accounts for the substrate specificity.


Assuntos
Acetilcoenzima A/metabolismo , Streptomyces/enzimologia , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Especificidade por Substrato , Treonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA