Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Chembiochem ; 24(24): e202300510, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37747702

RESUMO

3',5'-Cyclic nucleotides play a fundamental role in modern biochemical processes and have been suggested to have played a central role at the origin of terrestrial life. In this work, we suggest that a formamide-based systems chemistry might account for their availability on the early Earth. In particular, we demonstrate that in a liquid formamide environment at elevated temperatures 3',5'-cyclic nucleotides are obtained in good yield and selectivity upon intramolecular cyclization of 5'-phosphorylated nucleosides in the presence of carbodiimides.


Assuntos
Adenosina , Guanosina Monofosfato , Ciclização , Nucleosídeos/química , Nucleotídeos Cíclicos , Formamidas/química , Guanosina
2.
Entropy (Basel) ; 24(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892991

RESUMO

The search for the chemical origins of life represents a long-standing and continuously debated enigma. Despite its exceptional complexity, in the last decades the field has experienced a revival, also owing to the exponential growth of the computing power allowing for efficiently simulating the behavior of matter-including its quantum nature-under disparate conditions found, e.g., on the primordial Earth and on Earth-like planetary systems (i.e., exoplanets). In this minireview, we focus on some advanced computational methods capable of efficiently solving the Schro¨dinger equation at different levels of approximation (i.e., density functional theory)-such as ab initio molecular dynamics-and which are capable to realistically simulate the behavior of matter under the action of energy sources available in prebiotic contexts. In addition, recently developed metadynamics methods coupled with first-principles simulations are here reviewed and exploited to answer to old enigmas and to propose novel scenarios in the exponentially growing research field embedding the study of the chemical origins of life.

3.
Chemistry ; 27(70): 17581-17585, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34726799

RESUMO

The assembly of ancient informational polymers from nucleotide precursors is the central challenge of life's origin on our planet. Among the possible solutions, dry polymerization of 3',5'-cyclic guanosine monophosphate (3',5'-cGMP) has been proposed as a candidate to create oligonucleotides of 15-20 units in length. However, the reported sensitivity of the reaction to the presence of cations raised questions of whether this chemistry could be relevant in a geological context. The experiments in this study show that the presence of cations is not restrictive as long as the reaction is conducted in an acidic environment, in contrast to previous reports that suggested optimal conditions at pH 9.


Assuntos
GMP Cíclico , RNA , Catálise , Oligonucleotídeos , Polimerização
4.
J Am Chem Soc ; 142(16): 7306-7311, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32285674

RESUMO

A stereoselective synthesis of the ribosome-binding antitumor antibiotic (-)-bactobolin A is reported. The presented approach makes effective use of (-)-quinic acid as a chiral pool starting material and substrate stereocontrol to establish the five contiguous stereocenters of (-)-bactobolin A. The key steps of the synthesis include a stereoselective vinylogous aldol reaction to introduce the unusual dichloromethyl substituent, a completely diastereoselective rhodium(II)-catalyzed C-H amination reaction to set the configuration of the axial amine, and an intramolecular alkoxycarbonylation to build the bicyclic lactone framework. The developed synthetic route was used to prepare 90 mg of (-)-bactobolin A trifluoroacetate in 10% overall yield.


Assuntos
Benzopiranos/síntese química , Catálise , Estereoisomerismo
5.
Chemistry ; 26(65): 14919-14928, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32846019

RESUMO

Formation and structural modification of oxygenated polycyclic aromatic hydrocarbons (oxyPAHs) by UV irradiation on minerals have recently been proposed as a possible channel of PAH transformation in astrochemical and prebiotic scenarios of possible relevance for the origin of life. Herein, it is demonstrated that high-energy proton-beam irradiation in the presence of various meteorites, including stony iron, achondrite, and chondrite types, promotes the conversion of two representative oxyPAH compounds, 1-naphthol and 1,8-dihydroxynaphthalene, to complex mixtures of oxygenated and oligomeric derivatives. The main identified products include polyhydroxy derivatives, isomeric dimers encompassing benzofuran and benzopyran scaffolds, and, notably, a range of quinones and perylene derivatives. Addition of urea, a prebiotically relevant chemical precursor, expanded the range of identified species to include, among others, quinone diimines. Proton-beam irradiation of oxyPAH modulated by nitrogen-containing compounds such as urea is proposed as a possible contributory mechanism for the formation and processing of insoluble organic matter in meteorites and in prebiotic processes.

6.
Chemistry ; 26(52): 12075-12080, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32293757

RESUMO

Terrestrial volcanism has been one of the dominant geological forces shaping our planet since its earliest existence. Its associated phenomena, like atmospheric lightning and hydrothermal activity, provide a rich energy reservoir for chemical syntheses. Based on our laboratory simulations, we propose that on the early Earth volcanic activity inevitably led to a remarkable production of formic acid through various independent reaction channels. Large-scale availability of atmospheric formic acid supports the idea of the high-temperature accumulation of formamide in this primordial environment.

7.
Chembiochem ; 19(1): 22-25, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29164768

RESUMO

A short history of Campbell's primordial soup: In this essay we try to disclose some of the historical connections between the studies that have contributed to our current understanding of the emergence of catalytic RNA molecules and their components from an inanimate matter.


Assuntos
Prebióticos , Nucleosídeos/química , Nucleotídeos/química , RNA/metabolismo , RNA Catalítico/metabolismo , Ribossomos/metabolismo
8.
Proc Natl Acad Sci U S A ; 112(3): 657-62, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25489115

RESUMO

The coincidence of the Late Heavy Bombardment (LHB) period and the emergence of terrestrial life about 4 billion years ago suggest that extraterrestrial impacts could contribute to the synthesis of the building blocks of the first life-giving molecules. We simulated the high-energy synthesis of nucleobases from formamide during the impact of an extraterrestrial body. A high-power laser has been used to induce the dielectric breakdown of the plasma produced by the impact. The results demonstrate that the initial dissociation of the formamide molecule could produce a large amount of highly reactive CN and NH radicals, which could further react with formamide to produce adenine, guanine, cytosine, and uracil. Based on GC-MS, high-resolution FTIR spectroscopic results, as well as theoretical calculations, we present a comprehensive mechanistic model, which accounts for all steps taking place in the studied impact chemistry. Our findings thus demonstrate that extraterrestrial impacts, which were one order of magnitude more abundant during the LHB period than before and after, could not only destroy the existing ancient life forms, but could also contribute to the creation of biogenic molecules.

9.
Chembiochem ; 18(15): 1535-1543, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28471098

RESUMO

We report that 3',5'-cyclic CMP undergoes nonenzymatic di- and trimerization at 20 °C under dry conditions upon proton or UV irradiation. The reaction involves stacking of the cyclic monomers and subsequent polymerization through serial transphosphorylations between the stacked monomers. Proton- and UV-induced oligomerization of 3',5'-cyclic CMP demonstrates that pyrimidines-similar to purines-might also have taken part in the spontaneous generation of RNA under plausible prebiotic conditions as well as in an extraterrestrial context. The observed polymerization of naturally occurring 3',5'-cyclic nucleotides supports the possibility that the extant genetic nucleic acids might have originated by way of a straight Occamian path, starting from simple reactions between plausibly preactivated monomers.


Assuntos
CMP Cíclico/química , CMP Cíclico/efeitos da radiação , Oligorribonucleotídeos/síntese química , RNA/síntese química , Dicroísmo Circular , Evolução Química , Modelos Químicos , Polimerização , Prótons , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Raios Ultravioleta
10.
Phys Chem Chem Phys ; 19(3): 1817-1825, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28000820

RESUMO

Synthesis of the first RNAs represents one of the cornerstones of the emergence of life. Recent studies demonstrated powerful scenarios of prebiotic synthesis of cyclic nucleotides in aqueous and formamide environments. This raised a question about their thermodynamic stability, a decisive factor determining their accumulation in a prebiotic pool. Here we performed ab initio molecular dynamics simulations at various temperatures in formamide and water to study the relative stabilities of the 2',3' and 3',5' isomers of cyclic nucleotides. The computations show that in an aqueous environment 2',3' cyclic nucleotides are more stable than their 3',5' counterparts at all temperatures up to the boiling point. In contrast, in formamide higher temperatures favor the accumulation of the 3',5' cyclic form, whereas below about 400 K the 2',3' cyclic form becomes more stable. The latter observation is consistent with a formamide-based origin scenario, suggesting that 3',5' cyclic nucleotides accumulated at higher temperatures subsequently allowed oligomerization reactions after fast cooling to lower temperatures. A statistical analysis of the geometrical parameters of the solutes indicates that thermodynamics of cyclic nucleotides in aqueous and formamide environments are dictated by the floppiness of the molecules rather than by the ring strain of the cyclic phosphodiester linkages.


Assuntos
Formamidas/química , Simulação de Dinâmica Molecular , Nucleotídeos Cíclicos/química , Estabilidade de RNA , Água/química , Isomerismo , Estrutura Molecular , Prebióticos , RNA/química , Soluções/química , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA