Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 634(8036): 1204-1210, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39385023

RESUMO

Multivesicular bodies are key endosomal compartments implicated in cellular quality control through their degradation of membrane-bound cargo proteins1-3. The ATP-consuming ESCRT protein machinery mediates the capture and engulfment of membrane-bound cargo proteins through invagination and scission of multivesicular-body membranes to form intraluminal vesicles4,5. Here we report that the plant ESCRT component FREE16 forms liquid-like condensates that associate with membranes to drive intraluminal vesicle formation. We use a minimal physical model, reconstitution experiments and in silico simulations to identify the dynamics of this process and describe intermediate morphologies of nascent intraluminal vesicles. Furthermore, we find that condensate-wetting-induced line tension forces and membrane asymmetries are sufficient to mediate scission of the membrane neck without the ESCRT protein machinery or ATP consumption. Genetic manipulation of the ESCRT pathway in several eukaryotes provides additional evidence for condensate-mediated membrane scission in vivo. We find that the interplay between condensate and machinery-mediated scission mechanisms is indispensable for osmotic stress tolerance in plants. We propose that condensate-mediated scission represents a previously undescribed scission mechanism that depends on the physicomolecular properties of the condensate and is involved in a range of trafficking processes. More generally, FREE1 condensate-mediated membrane scission in multivesicular-body biogenesis highlights the fundamental role of wetting in intracellular dynamics and organization.


Assuntos
Arabidopsis , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos , Membranas Intracelulares , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Endossomos/metabolismo , Arabidopsis/metabolismo , Membranas Intracelulares/metabolismo , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Corpos Multivesiculares/metabolismo , Pressão Osmótica , Trifosfato de Adenosina/metabolismo
2.
Biochim Biophys Acta Biomembr ; 1859(1): 17-27, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27755971

RESUMO

Bcl-2 proteins are key regulators of the mitochondrial outer membrane (MOM) permeabilization that mediates apoptosis. During apoptosis, Bid is cleaved (cBid) and translocates to the MOM, where it activates Bax. Bax then oligomerizes and induces MOM permeabilization. However, little is known about how these proteins affect membrane organization aside from pore formation. In previous studies, we have shown that both cBid and Bax are able to remodel membranes and stabilize curvature. Here, we dissected the independent effects of Bax and cBid on supported lipid structures mimicking the mitochondrial composition by means of atomic force spectroscopy. We show that cBid did not permeabilize the membrane but lowered the membrane breakthrough force. On the other hand, Bax effects were dependent on its oligomeric state. Monomeric Bax did not affect the membrane properties. In contrast, oligomeric Bax lowered the breakthrough force of the membrane, which in the context of pore formation, implies a lowering of the line tension at the edge of the pore.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/química , Lipossomos/química , Membranas Mitocondriais/química , Modelos Biológicos , Proteína X Associada a bcl-2/química , Animais , Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Cardiolipinas/química , Cardiolipinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Lipossomos/metabolismo , Camundongos , Microscopia de Força Atômica , Mitocôndrias/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Mutação , Permeabilidade , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
3.
Autophagy ; 19(1): 338-351, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35435815

RESUMO

Single cell-based analysis of macroautophagy/autophagy is largely achieved through the use of fluorescence microscopy to detect autophagy-related proteins that associate with autophagic membranes and therefore can be quantified as fluorescent puncta. In this context, an automated analysis of the number and size of recognized puncta is preferable to a manual count, because more reliable results can be generated in a short time. Here we present a method for open source CellProfiler software-based analysis for quantitative autophagy assessments using GFP-tagged WIPI1 (WD repeat domain, phosphoinositide interacting 1) images acquired with Airyscan or confocal laser-scanning microscopy. The CellProfiler protocol is provided as a ready-to-use software pipeline, and the creation of this pipeline is detailed in both text and video formats. In addition, we provide CellProfiler pipelines for endogenous SQSTM1/p62 (sequestosome 1) or intracellular lipid droplet (LD) analysis, suitable to assess forms of selective autophagy. All protocols and software pipelines can be quickly and easily adapted for the use of alternative autophagy markers or cell types, and can also be used for high-throughput purposes.Abbreviations: AF Alexa Fluor ATG autophagy related BafA1 bafilomycin A1 BSA bovine serum albumin DAPI 4,6-diamidino-2-phenylindole DMEM Dulbecco's modified Eagle's medium DMSO dimethyl sulfoxide EDTA ethylenediaminetetraacetic acid EBSS Earle's balanced salt solution FBS fetal bovine serum GFP green fluorescent protein LD lipid droplet LSM laser scanning microscope MAP1LC3B microtubule associated protein 1 light chain 3 beta MTOR mechanistic target of rapamycin kinase PBS phosphate-buffered saline PIK3C3/VPS34 phosphatidylinositol 3-kinase catalytic subunit type 3 SQSTM1 sequestosome 1 TIFF tagged image file format U2OS U-2 OS cell line WIPI WD repeat domain, phosphoinositide interacting.


Assuntos
Autofagia , Fosfatidilinositóis , Proteínas Relacionadas à Autofagia/metabolismo
4.
Commun Biol ; 6(1): 872, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620393

RESUMO

Human WIPI ß-propellers function as PI3P effectors in autophagy, with WIPI4 and WIPI3 being able to link autophagy control by AMPK and TORC1 to the formation of autophagosomes. WIPI1, instead, assists WIPI2 in efficiently recruiting the ATG16L1 complex at the nascent autophagosome, which in turn promotes lipidation of LC3/GABARAP and autophagosome maturation. However, the specific role of WIPI1 and its regulation are unknown. Here, we discovered the ABL-ERK-MYC signalling axis controlling WIPI1. As a result of this signalling, MYC binds to the WIPI1 promoter and represses WIPI1 gene expression. When ABL-ERK-MYC signalling is counteracted, increased WIPI1 gene expression enhances the formation of autophagic membranes capable of migrating through tunnelling nanotubes to neighbouring cells with low autophagic activity. ABL-regulated WIPI1 function is relevant to lifespan control, as ABL deficiency in C. elegans increased gene expression of the WIPI1 orthologue ATG-18 and prolonged lifespan in a manner dependent on ATG-18. We propose that WIPI1 acts as an enhancer of autophagy that is physiologically relevant for regulating the level of autophagic activity over the lifespan.


Assuntos
Longevidade , Proteínas Proto-Oncogênicas c-abl , Animais , Humanos , Autofagossomos , Autofagia/genética , Caenorhabditis elegans/genética , Longevidade/genética , Macroautofagia , Proteínas Proto-Oncogênicas c-abl/genética
5.
Cell Death Dis ; 13(10): 902, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302750

RESUMO

Ca2+-activated K+ channels of intermediate conductance (IK) are frequently overexpressed in breast cancer (BC) cells, while IK channel depletion reduces BC cell proliferation and tumorigenesis. This raises the question, of whether and mechanistically how IK activity interferes with the metabolic activity and energy consumption rates, which are fundamental for rapidly growing cells. Using BC cells obtained from MMTV-PyMT tumor-bearing mice, we show that both, glycolysis and mitochondrial ATP-production are reduced in cells derived from IK-deficient breast tumors. Loss of IK altered the sub-/cellular K+- and Ca2+- homeostasis and mitochondrial membrane potential, ultimately resulting in reduced ATP-production and metabolic activity. Consequently, we find that BC cells lacking IK upregulate AMP-activated protein kinase activity to induce autophagy compensating the glycolytic and mitochondrial energy shortage. Our results emphasize that IK by modulating cellular Ca2+- and K+-dynamics contributes to the remodeling of metabolic pathways in cancer. Thus, targeting IK channel might disturb the metabolic activity of BC cells and reduce malignancy.


Assuntos
Neoplasias da Mama , Canais de Potássio Ativados por Cálcio de Condutância Intermediária , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Glicólise , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Neoplasias da Mama/metabolismo
6.
Cells ; 8(3)2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871075

RESUMO

During macroautophagy, the human WIPI (WD-repeat protein interacting with phosphoinositides) proteins (WIPI1⁻4) function as phosphatidylinositol 3-phosphate effectors at the nascent autophagosome. Likewise, the two WIPI homologues in Caenorhabditis elegans, ATG-18 and EPG-6, play important roles in autophagy, whereby ATG-18 is considered to act upstream of EPG-6 at the onset of autophagy. Due to its essential role in autophagy, ATG-18 was found to be also essential for lifespan extension in Caenorhabditis elegans; however, this has not yet been addressed with regard to EPG-6. Here, we wished to address this point and generated mutant strains that expressed the autophagy marker GFP::LGG-1 (GFP-LC3 in mammals) and harbored functional deletions of either atg-18 (atg18(gk378)), epg-6 (epg-6(bp242)) or both (atg-18(gk378);epg-6(bp242)). Using quantitative fluorescence microscopy, Western blotting, and lifespan assessments, we provide evidence that in the absence of either ATG-18 or EPG-6 autophagy was impaired, and while atg-18 mutant animals showed a short-lived phenotype, lifespan was significantly increased in epg-6 mutant animals. We speculate that the long-lived phenotype of epg-6 mutant animals points towards an autophagy-independent function of EPG-6 in lifespan control that warrants further mechanistic investigations in future studies.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Longevidade/fisiologia , Proteínas de Membrana/metabolismo , Animais , Caenorhabditis elegans/embriologia , Embrião não Mamífero/citologia , Larva/fisiologia , Masculino , Modelos Biológicos , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA