Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Assay Drug Dev Technol ; 8(6): 703-13, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21158685

RESUMO

Transient receptor potential melastatin-5 (TRPM5) is a calcium-gated monovalent cation channel expressed in highly specialized cells of the taste bud and gastrointestinal tract, as well as in pancreatic ß-cells. Well established as a critical signaling protein for G protein-coupled receptor-mediated taste pathways, TRPM5 also has recently been implicated as a regulator of incretin and insulin secretion. To date, no inhibitors of practical use have been described that could facilitate investigation of TRPM5 functions in taste or secretion of metabolic hormones. Using recombinant TRPM5-expressing cells in a fluorescence imaging plate reader-based membrane potential assay, we identified triphenylphosphine oxide (TPPO) as a selective and potent inhibitor of TRPM5. TPPO inhibited both human (IC50 = 12 µM) and murine TRPM5 (IC50 = 30 µM) heterologously expressed in HEK293 cells, but had no effect (up to 100 µM) on the membrane potential responses of TRPA1, TRPV1, or TRPM4b. TPPO also inhibited a calcium-gated TRPM5-dependent conductance in taste cells isolated from the tongues of transgenic TRPM5(+/)⁻ mice. In contrast, TPP had no effect on TRPM5 responses, indicating a strict requirement of the oxygen atom for activity. Sixteen additional TPPO derivatives also inhibited TRPM5 but none more potently than TPPO. Structure-activity relationship of tested compounds was used for molecular modeling-based analysis to clarify the positive and negative structural contributions to the potency of TPPO and its derivatives. TPPO is the most potent TRPM5 inhibitor described to date and is the first demonstrated to exhibit selectivity over other channels.


Assuntos
Compostos Organofosforados/farmacologia , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Cálcio/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Medições Luminescentes , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Compostos Organofosforados/química , Técnicas de Patch-Clamp , Relação Estrutura-Atividade , Canais de Cátion TRPM/genética , Paladar , Papilas Gustativas/efeitos dos fármacos , Papilas Gustativas/fisiologia
2.
J Comb Chem ; 6(4): 530-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15244414

RESUMO

Products from combinatorial libraries generally share a common core structure that can be exploited to improve the efficiency of virtual high-throughput screening (vHTS). In general, it is more efficient to find a method that scales with the total number of reagents (Sigma growth) rather with the number of products (Pi growth). The OptiDock methodology described herein entails selecting a diverse but representative subset of compounds that span the structural space encompassed by the full library. These compounds are docked individually using the FlexX program (Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. J. Mol. Biol. 1995, 251, 470-489) to define distinct docking modes in terms of reference placements for combinatorial core atoms. Thereafter, substituents in R-cores (consisting of the core structure substituted at a single variation site) are docked, keeping the core atoms fixed at the coordinates dictated by each reference placement. Interaction energies are calculated for each docked R-core with respect to the target protein, and energies for whole compounds are calculated by finding the reference core placement for which the sum of corresponding R-core energies is most negative. The use of diverse whole compounds to define binding modes is a key advantage of the protocol over other combinatorial docking programs. As a result, OptiDock returns better-scoring conformers than does serially applied FlexX. OptiDock is also better able to find a viable docked pose for each library member than are other combinatorial approaches.


Assuntos
Técnicas de Química Combinatória/instrumentação , Técnicas de Química Combinatória/métodos , Software , Sítios de Ligação , Ligantes , Conformação Molecular , Estrutura Molecular , Proteínas/química , Proteínas/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA