Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Evol Appl ; 1(2): 356-75, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-25567637

RESUMO

Most hatchery programs for anadromous salmonids have been initiated to increase the numbers of fish for harvest, to mitigate for habitat losses, or to increase abundance in populations at low abundance. However, the manner in which these programs are implemented can have significant impacts on the evolutionary trajectory and long-term viability of populations. In this paper, we review the potential benefits and risks of hatchery programs relative to the conservation of species listed under the US Endangered Species Act. To illustrate, we present the range of potential effects within a population as well as among populations of Chinook salmon (Oncorhynchus tshawytscha) where changes to major hatchery programs are being considered. We apply evolutionary considerations emerging from these examples to suggest broader principles for hatchery uses that are consistent with conservation goals. We conclude that because of the evolutionary risks posed by artificial propagation programs, they should not be viewed as a substitute for addressing other limiting factors that prevent achieving viability. At the population level, artificial propagation programs that are implemented as a short-term approach to avoid imminent extinction are more likely to achieve long-term population viability than approaches that rely on long-term supplementation. In addition, artificial propagation programs can have out-of-population impacts that should be considered in conservation planning.

2.
Mol Ecol ; 15(10): 2767-86, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16911199

RESUMO

To demonstrate the importance of genetic data for multispecies conservation approaches, we examined the distribution of genetic variation across the range of the mountain whitefish (Prosopium williamsoni) at microsatellite and allozyme loci. The mountain whitefish is a common species that is particularly well suited for accurately revealing historical patterns of genetic structure and differs markedly from previously studied species in habitat requirements and life history characteristics. As such, comparing the population genetic structure of other native fishes to similar data from mountain whitefish could inform management and conservation strategies. Genetic variation for mountain whitefish was hierarchically distributed for both allozymes and microsatellites. We found evidence for a total of five major genetically differentiated assemblages and we observed subdivision among populations within assemblages that generally corresponded to major river basins. We observed little genetic differentiation within major river basins. Geographic patterns of genetic differentiation for mountain whitefish were concordant with other native species in several circumstances, providing information for the designation of conservation units that reflect concordant genetic differentiation of multiple species. Differences in genetic patterns between mountain whitefish and other native fishes reflect either differences in evolutionary histories of the species considered or differences in aspects of their ecology and life history. In addition, mountain whitefish populations appear to exchange genes over a much larger geographic scale than co-occurring salmonids and are likely to be affected differently by disturbances such as habitat fragmentation.


Assuntos
Conservação dos Recursos Naturais/métodos , Variação Genética/genética , Salmonidae/genética , Migração Animal/fisiologia , Animais , Teorema de Bayes , Genética Populacional , Geografia , Repetições de Microssatélites/genética , América do Norte , Filogenia , Análise de Componente Principal , Especificidade da Espécie
3.
Mol Ecol ; 13(12): 3675-88, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15548282

RESUMO

Ecological and life history characteristics such as population size, dispersal pattern, and mating system mediate the influence of genetic drift and gene flow on population subdivision. Bull trout (Salvelinus confluentus) and mountain whitefish (Prosopium williamsoni) differ markedly in spawning location, population size and mating system. Based on these differences, we predicted that bull trout would have reduced genetic variation within and greater differentiation among populations compared with mountain whitefish. To test this hypothesis, we used microsatellite markers to determine patterns of genetic divergence for each species in the Clark Fork River, Montana, USA. As predicted, bull trout had a much greater proportion of genetic variation partitioned among populations than mountain whitefish. Among all sites, FST was seven times greater for bull trout (FST = 0.304 for bull trout, 0.042 for mountain whitefish. After removing genetically differentiated high mountain lake sites for each species FST, was 10 times greater for bull trout (FST = 0.176 for bull trout; FST = 0.018 for mountain whitefish). The same characteristics that affect dispersal patterns in these species also lead to predictions about the amount and scale of adaptive divergence among populations. We provide a theoretical framework that incorporates variation in ecological and life history factors, neutral divergence, and adaptive divergence to interpret how neutral and adaptive divergence might be correlates of ecological and life history factors.


Assuntos
Demografia , Variação Genética , Genética Populacional , Reprodução/fisiologia , Salmonidae/fisiologia , Animais , Análise por Conglomerados , Água Doce , Frequência do Gene , Triagem de Portadores Genéticos , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Montana , Densidade Demográfica , Reprodução/genética , Salmonidae/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA