Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Syst Biol ; 13(4): 927, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28455349

RESUMO

The intestinal epithelium is the fastest regenerative tissue in the body, fueled by fast-cycling stem cells. The number and identity of these dividing and migrating stem cells are maintained by a mosaic pattern at the base of the crypt. How the underlying regulatory scheme manages this dynamic stem cell niche is not entirely clear. We stimulated intestinal organoids with Notch ligands and inhibitors and discovered that intestinal stem cells employ a positive feedback mechanism via direct Notch binding to the second intron of the Notch1 gene. Inactivation of the positive feedback by CRISPR/Cas9 mutation of the binding sequence alters the mosaic stem cell niche pattern and hinders regeneration in organoids. Dynamical system analysis and agent-based multiscale stochastic modeling suggest that the positive feedback enhances the robustness of Notch-mediated niche patterning. This study highlights the importance of feedback mechanisms in spatiotemporal control of the stem cell niche.


Assuntos
Retroalimentação Fisiológica , Intestinos/citologia , Receptor Notch1/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sítios de Ligação , Autorrenovação Celular , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Mutação , Organoides/metabolismo , Receptor Notch1/química , Transdução de Sinais , Nicho de Células-Tronco , Processos Estocásticos , Biologia de Sistemas/métodos
2.
J Bacteriol ; 194(3): 617-26, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22123249

RESUMO

Lateral gene transfer (LGT) is essential for generating between-strain genomic recombinants of Chlamydia trachomatis to facilitate the organism's evolution. Because there is no reliable laboratory-based gene transfer system for C. trachomatis, in vitro generation of recombinants from antibiotic-resistant strains is being used to study LGT. However, selection pressures imposed on in vitro recombinants likely affect statistical properties of recombination relative to naturally occurring clinical recombinants, including prevalence at particular loci. We examined multiple loci for 16 in vitro-derived recombinants of ofloxacin- and rifampin-resistant L(1) and D strains, respectively, grown with both antibiotics, and compared these with the same sequenced loci among 11 clinical recombinants. Breakpoints and recombination frequency were examined using phylogenetics, bioinformatics, and statistics. In vitro and clinical isolates clustered perfectly into two groups, without misclassification, using Ward's minimum variance based on breakpoint data. As expected, gyrA (confers ofloxacin resistance) and rpoB (confers rifampin resistance) had significantly more breakpoints among in vitro recombinants than among clinical recombinants (P < 0.0001 and P = 0.02, respectively, using the Wilcoxon rank sum test). Unexpectedly, trpA also had significantly more breakpoints for in vitro recombinants (P < 0.0001). There was also significant selection at other loci. The strongest bias was for ompA in strain D (P = 3.3 × 10(-8)). Our results indicate that the in vitro model differs statistically from natural recombination events. Additional genomic studies are needed to determine the factors responsible for the observed selection biases at unexpected loci and whether these are important for LGT to inform approaches for genetically manipulating C. trachomatis.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Farmacorresistência Bacteriana , Recombinação Genética , Antibacterianos/farmacologia , Sequência de Bases , Chlamydia trachomatis/classificação , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/metabolismo , Engenharia Genética , Humanos , Dados de Sequência Molecular , Filogenia
3.
Elife ; 72018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29629872

RESUMO

Notch signalling maintains stem cell regeneration at the mouse intestinal crypt base and balances the absorptive and secretory lineages in the upper crypt and villus. Here we report the role of Fringe family of glycosyltransferases in modulating Notch activity in the two compartments. At the crypt base, RFNG is enriched in the Paneth cells and increases cell surface expression of DLL1 and DLL4. This promotes Notch activity in the neighbouring Lgr5+ stem cells assisting their self-renewal. Expressed by various secretory cells in the upper crypt and villus, LFNG promotes DLL surface expression and suppresses the secretory lineage . Hence, in the intestinal epithelium, Fringes are present in the ligand-presenting 'sender' secretory cells and promote Notch activity in the neighbouring 'receiver' cells. Fringes thereby provide for targeted modulation of Notch activity and thus the cell fate in the stem cell zone, or the upper crypt and villus.


Assuntos
Homeostase , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Intestinos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Células-Tronco/citologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Glucosiltransferases , Glicosiltransferases , Peptídeos e Proteínas de Sinalização Intercelular/genética , Intestinos/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores Notch/genética , Transdução de Sinais , Células-Tronco/metabolismo
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2378-2381, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440885

RESUMO

Organoids are three-dimensional cell cultures that mimic organ functions and structures. The organoid model has been developed as a versatile in vitro platform for stem cell biology and diseases modeling. Tumor organoids are shown to share ~ 90% of genetic mutations with biopsies from same patients. However, it's not clear whether tumor organoids recapitulate the cellular heterogeneity observed in patient tumors. Here, we used single-cell RNA-Seq to investigate the transcriptomics of tumor organoids derived from human colorectal tumors, and applied machine learning methods to unbiasedly cluster subtypes in tumor organoids. Computational analysis reveals cancer heterogeneity sustained in tumor organoids, and the subtypes in organoids displayed high diversity. Furthermore, we treated the tumor organoids with a first-line cancer drug, Oxaliplatin, and investigated drug response in single-cell scale. Diversity of tumor cell populations in organoids were significantly perturbed by drug treatment. Single-cell analysis detected the depletion of chemosensitive subgroups and emergence of new drug tolerant subgroups after drug treatment. Our study suggests that the organoid model is capable of recapitulating clinical heterogeneity and its evolution in response to chemotherapy.


Assuntos
Neoplasias Colorretais/metabolismo , Organoides/metabolismo , Oxaliplatina/farmacologia , Análise de Célula Única , Transcriptoma , Técnicas de Cultura de Células , Humanos , Organoides/efeitos dos fármacos
6.
Nat Med ; 23(7): 878-884, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28628110

RESUMO

With the goal of modeling human disease of the large intestine, we sought to develop an effective protocol for deriving colonic organoids (COs) from differentiated human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs). Extensive gene and immunohistochemical profiling confirmed that the derived COs represent colon rather than small intestine, containing stem cells, transit-amplifying cells, and the expected spectrum of differentiated cells, including goblet and endocrine cells. We applied this strategy to iPSCs derived from patients with familial adenomatous polyposis (FAP-iPSCs) harboring germline mutations in the WNT-signaling-pathway-regulator gene encoding APC, and we generated COs that exhibit enhanced WNT activity and increased epithelial cell proliferation, which we used as a platform for drug testing. Two potential compounds, XAV939 and rapamycin, decreased proliferation in FAP-COs, but also affected cell proliferation in wild-type COs, which thus limits their therapeutic application. By contrast, we found that geneticin, a ribosome-binding antibiotic with translational 'read-through' activity, efficiently targeted abnormal WNT activity and restored normal proliferation specifically in APC-mutant FAP-COs. These studies provide an efficient strategy for deriving human COs, which can be used in disease modeling and drug discovery for colorectal disease.


Assuntos
Adenoma/genética , Polipose Adenomatosa do Colo/genética , Antibióticos Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Colo/efeitos dos fármacos , Neoplasias Colorretais/genética , Células-Tronco Embrionárias Humanas , Organoides/efeitos dos fármacos , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Western Blotting , Diferenciação Celular , Colo/citologia , Colo/metabolismo , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Células Enteroendócrinas/citologia , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Gentamicinas/farmacologia , Mutação em Linhagem Germinativa , Células Caliciformes/citologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas , Microscopia Confocal , Mutação , Organoides/citologia , Organoides/metabolismo , Organoides/patologia , Reação em Cadeia da Polimerase em Tempo Real , Sirolimo/farmacologia , Via de Sinalização Wnt
7.
J Vis Exp ; (111)2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27285214

RESUMO

Primary intestinal organoids are a valuable model system that has the potential to significantly impact the field of mucosal immunology. However, the complexities of the organoid growth characteristics carry significant caveats for the investigator. Specifically, the growth patterns of each individual organoid are highly variable and create a heterogeneous population of epithelial cells in culture. With such caveats, common tissue culture practices cannot be simply applied to the organoid system due to the complexity of the cellular structure. Counting and plating based solely on cell number, which is common for individually separated cells, such as cell lines, is not a reliable method for organoids unless some normalization technique is applied. Normalizing to total protein content is made complex due to the resident protein matrix. These characteristics in terms of cell number, shape and cell type should be taken into consideration when evaluating secreted contents from the organoid mass. This protocol has been generated to outline a simple procedure to culture and treat small intestinal organoids with microbial pathogens and pathogen associated molecular patterns (PAMPs). It also emphasizes the normalization techniques that should be applied when protein analysis are conducted after such a challenge.


Assuntos
Intestino Delgado/metabolismo , Organoides , Receptores de Reconhecimento de Padrão , Animais , Intestino Delgado/microbiologia , Camundongos , Técnicas de Cultura de Tecidos
8.
Elife ; 52016 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-27077950

RESUMO

The roles of long non-coding RNAs (lncRNAs) in regulating cancer and stem cells are being increasingly appreciated. Its diverse mechanisms provide the regulatory network with a bigger repertoire to increase complexity. Here we report a novel LncRNA, Lnc34a, that is enriched in colon cancer stem cells (CCSCs) and initiates asymmetric division by directly targeting the microRNA miR-34a to cause its spatial imbalance. Lnc34a recruits Dnmt3a via PHB2 and HDAC1 to methylate and deacetylate the miR-34a promoter simultaneously, hence epigenetically silencing miR-34a expression independent of its upstream regulator, p53. Lnc34a levels affect CCSC self-renewal and colorectal cancer (CRC) growth in xenograft models. Lnc34a is upregulated in late-stage CRCs, contributing to epigenetic miR-34a silencing and CRC proliferation. The fact that lncRNA targets microRNA highlights the regulatory complexity of non-coding RNAs (ncRNAs), which occupy the bulk of the genome.


Assuntos
Divisão Celular , Neoplasias do Colo/patologia , Regulação da Expressão Gênica , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Células-Tronco/fisiologia , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Epigênese Genética , Inativação Gênica , Histona Desacetilase 1/metabolismo , Humanos , Proibitinas , Regiões Promotoras Genéticas
9.
Cancer Res ; 76(11): 3411-21, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27197180

RESUMO

Colorectal cancer cells with stem-like properties, referred to as colon cancer-initiating cells (CCIC), have high tumorigenic potential. While CCIC can differentiate to promote cellular heterogeneity, it remains unclear whether CCIC within a tumor contain distinct subpopulations. Here, we describe the co-existence of fast- and slow-cycling CCIC, which can undergo asymmetric division to generate each other, highlighting CCIC plasticity and interconvertibility. Fast-cycling CCIC express markers, such as LGR5 and CD133, rely on MYC for their proliferation, whereas slow-cycling CCIC express markers, such as BMI1 and hTERT, are independent of MYC. NOTCH signaling promotes asymmetric cell fate, regulating the balance between these two populations. Overall, our results illuminate the basis for CCIC heterogeneity and plasticity by defining a direct interconversion mechanism between slow- and fast-cycling CCIC. Cancer Res; 76(11); 3411-21. ©2016 AACR.


Assuntos
Diferenciação Celular , Neoplasias do Colo/patologia , Células-Tronco Neoplásicas/patologia , Receptores Notch/metabolismo , Antígeno AC133/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias do Colo/metabolismo , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Telomerase/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Rep ; 6: 26069, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27181744

RESUMO

Rapidly cycling LGR5+ intestinal stem cells (ISCs) located at the base of crypts are the primary driver of regeneration. Additionally, BMI1 expression is correlated with a slow cycling pool of ISCs located at +4 position. While previous reports have shown interconversion between these two populations following tissue injury, we provide evidence that NOTCH signaling regulates the balance between these two populations and promotes asymmetric division as a mechanism for interconversion in the mouse intestine. In both in vitro and in vivo models, NOTCH suppression reduces the ratio of BMI1+/LGR5+ ISCs while NOTCH stimulation increases this ratio. Furthermore, NOTCH signaling can activate asymmetric division after intestinal inflammation. Overall, these data provide insights into ISC plasticity, demonstrating a direct interconversion mechanism between slow- and fast-cycling ISCs.


Assuntos
Células-Tronco Adultas/fisiologia , Intestinos/citologia , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Notch/metabolismo , Animais , Divisão Celular , Plasticidade Celular , Transdiferenciação Celular , Células Cultivadas , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/genética , Regeneração , Transdução de Sinais
11.
Cell Stem Cell ; 18(2): 189-202, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26849305

RESUMO

Emerging evidence suggests that microRNAs can initiate asymmetric division, but whether microRNA and protein cell fate determinants coordinate with each other remains unclear. Here, we show that miR-34a directly suppresses Numb in early-stage colon cancer stem cells (CCSCs), forming an incoherent feedforward loop (IFFL) targeting Notch to separate stem and non-stem cell fates robustly. Perturbation of the IFFL leads to a new intermediate cell population with plastic and ambiguous identity. Lgr5+ mouse intestinal/colon stem cells (ISCs) predominantly undergo symmetric division but turn on asymmetric division to curb the number of ISCs when proinflammatory response causes excessive proliferation. Deletion of miR-34a inhibits asymmetric division and exacerbates Lgr5+ ISC proliferation under such stress. Collectively, our data indicate that microRNA and protein cell fate determinants coordinate to enhance robustness of cell fate decision, and they provide a safeguard mechanism against stem cell proliferation induced by inflammation or oncogenic mutation.


Assuntos
Divisão Celular Assimétrica , Inflamação/patologia , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Divisão Celular Assimétrica/efeitos dos fármacos , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Camundongos , MicroRNAs/genética , Dados de Sequência Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Receptores Notch/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
12.
Int J Proteomics ; 2013: 791985, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23710360

RESUMO

The receptor tyrosine kinase ErbB2 is a breast cancer biomarker whose posttranslational modifications (PTMs) are a key indicator of its activation. Quantifying the expression and PTMs of biomarkers such as ErbB2 by selected reaction monitoring (SRM) mass spectrometry has several limitations, including minimal coverage and extensive assay development time. Therefore, we assessed the utility of two high resolution, full scan mass spectrometry approaches, MS1 Filtering and SWATH MS2, for targeted ErbB2 proteomics. Endogenous ErbB2 immunoprecipitated from SK-BR-3 cells was in-gel digested with trypsin, chymotrypsin, Asp-N, or trypsin plus Asp-N in triplicate. Data-dependent acquisition with an AB SCIEX TripleTOF 5600 and MS1 Filtering data processing was used to assess peptide and PTM coverage as well as the reproducibility of enzyme digestion. Data-independent acquisition (SWATH) was also performed for MS2 quantitation. MS1 Filtering and SWATH MS2 allow quantitation of all detected analytes after acquisition, enabling the use of multiple proteases for quantitative assessment of target proteins. Combining high resolution proteomics with multiprotease digestion enabled quantitative mapping of ErbB2 with excellent reproducibility, improved amino acid sequence and PTM coverage, and decreased assay development time compared to typical SRM assays. These results demonstrate that high resolution quantitative proteomic approaches are an effective tool for targeted biomarker quantitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA