Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 297(1): 100727, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933457

RESUMO

The human fungal pathogen Candida albicans responds to iron deprivation by a global transcriptome reconfiguration known to be controlled by the transcriptional regulators Hap43 (also known as Cap2), Sef1, and the trimeric Hap2-Hap3-Hap5 complex. However, the relative roles of these regulators are not known. To dissect this system, we focused on the FRP1 and ACO1 genes, which are induced and repressed, respectively, under iron deprivation conditions. Chromatin immunoprecipitation assays showed that the trimeric HAP complex and Sef1 are recruited to both FRP1 and ACO1 promoters. While the HAP complex occupancy at the FRP1 promoter was Sef1-dependent, occupancy of Sef1 was not dependent on the HAP complex. Furthermore, iron deprivation elicited histone H3-Lys9 hyperacetylation and Pol II recruitment mediated by the trimeric HAP complex and Sef1 at the FRP1 promoter. In contrast, at the ACO1 promoter, the HAP trimeric complex and Hap43 promoted histone deacetylation and also limited Pol II recruitment under iron deprivation conditions. Mutational analysis showed that the SAGA subunits Gcn5, Spt7, and Spt20 are required for C. albicans growth in iron-deficient medium and for H3-K9 acetylation and transcription from the FRP1 promoter. Thus, the trimeric HAP complex promotes FRP1 transcription by stimulating H3K9Ac and Pol II recruitment and, along with Hap43, functions as a repressor of ACO1 by maintaining a deacetylated promoter under iron-deficient conditions. Thus, a regulatory network involving iron-responsive transcriptional regulators and the SAGA histone modifying complex functions as a molecular switch to fine-tune tight control of iron homeostasis gene expression in C. albicans.


Assuntos
Candida albicans/metabolismo , Cromatina/metabolismo , Proteínas Fúngicas/metabolismo , Homeostase , Ferro/metabolismo , Complexos Multiproteicos/metabolismo , Transcrição Gênica , Acetilação , Sequência de Bases , Sítios de Ligação , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Lisina/metabolismo , Modelos Genéticos , Regiões Promotoras Genéticas , Subunidades Proteicas/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo
2.
mSphere ; 3(4)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068562

RESUMO

Iron is required for growth and metabolism by virtually all organisms. The human fungal pathogen Candida albicans has evolved multiple strategies to acquire iron. The Cap2/Hap43 transcriptional regulator, essential for robust virulence of C. albicans, controls iron homeostasis gene expression by promoter binding and repression of iron utilization genes. The expression of iron uptake genes is also dependent on Cap2, although Cap2 was not recruited to its promoters. Cap2, bearing the conserved bipartite HAP4L-bZIP domain, also contains multiple blocks of amino acids that form the highly conserved carboxyl-terminal region. In this study, we sought to identify the requirements of the different domains for Cap2 function. We constructed a series of mutants bearing either point mutations or deletions in the conserved domains and examined Cap2 activity. Deletion of the highly conserved extreme C-terminal region did not impair expression of Cap2 mutant protein but impaired cell growth and expression of iron homeostasis genes under iron-depleted conditions. Mutations in the amino-terminal HAP4L and basic leucine zipper (bZIP) domains also impaired growth and gene expression. Furthermore, chromatin immunoprecipitation (ChIP) assays showed that the HAP4L domain and the bZIP domain are both essential for Cap2 recruitment to ACO1 and CYC1 promoters. Unexpectedly, the C-terminal conserved region was also essential for Cap2 promoter recruitment. Thus, our results suggest that Cap2 employs multiple evolutionarily conserved domains, including the C-terminal domain for its transcriptional activity.IMPORTANCE Iron is an essential micronutrient for living cells. Candida albicans, the predominant human fungal pathogen, thrives under diverse environments with vastly different iron levels in the mammalian host. Therefore, to tightly control iron homeostasis, C. albicans has evolved a set of transcriptional regulators that cooperate to either upregulate or downregulate transcription of iron uptake genes or iron utilization genes. Cap2/Hap43, a critical transcriptional regulator, contains multiple conserved protein domains. In this study, we carried out mutational analyses to identify the functional roles of the conserved protein domains in Cap2. Our results show that the bZIP, HAP4L, and the C-terminal domain are each required for Cap2 transcriptional activity. Thus, Cap2 employs multiple, disparate protein domains for regulation of iron homeostasis in C. albicans.


Assuntos
Candida albicans/genética , Proteínas Fúngicas/genética , Homeostase/genética , Ferro/metabolismo , Regiões Promotoras Genéticas , Candida albicans/patogenicidade , Imunoprecipitação da Cromatina , Sequência Conservada , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA