Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(1): e22-e42, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36444722

RESUMO

BACKGROUND: Excess cholesterol accumulation in lesional macrophages elicits complex responses in atherosclerosis. Epsins, a family of endocytic adaptors, fuel the progression of atherosclerosis; however, the underlying mechanism and therapeutic potential of targeting Epsins remains unknown. In this study, we determined the role of Epsins in macrophage-mediated metabolic regulation. We then developed an innovative method to therapeutically target macrophage Epsins with specially designed S2P-conjugated lipid nanoparticles, which encapsulate small-interfering RNAs to suppress Epsins. METHODS: We used single-cell RNA sequencing with our newly developed algorithm MEBOCOST (Metabolite-mediated Cell Communication Modeling by Single Cell Transcriptome) to study cell-cell communications mediated by metabolites from sender cells and sensor proteins on receiver cells. Biomedical, cellular, and molecular approaches were utilized to investigate the role of macrophage Epsins in regulating lipid metabolism and transport. We performed this study using myeloid-specific Epsin double knockout (LysM-DKO) mice and mice with a genetic reduction of ABCG1 (ATP-binding cassette subfamily G member 1; LysM-DKO-ABCG1fl/+). The nanoparticles targeting lesional macrophages were developed to encapsulate interfering RNAs to treat atherosclerosis. RESULTS: We revealed that Epsins regulate lipid metabolism and transport in atherosclerotic macrophages. Inhibiting Epsins by nanotherapy halts inflammation and accelerates atheroma resolution. Harnessing lesional macrophage-specific nanoparticle delivery of Epsin small-interfering RNAs, we showed that silencing of macrophage Epsins diminished atherosclerotic plaque size and promoted plaque regression. Mechanistically, we demonstrated that Epsins bound to CD36 to facilitate lipid uptake by enhancing CD36 endocytosis and recycling. Conversely, Epsins promoted ABCG1 degradation via lysosomes and hampered ABCG1-mediated cholesterol efflux and reverse cholesterol transport. In a LysM-DKO-ABCG1fl/+ mouse model, enhanced cholesterol efflux and reverse transport due to Epsin deficiency was suppressed by the reduction of ABCG1. CONCLUSIONS: Our findings suggest that targeting Epsins in lesional macrophages may offer therapeutic benefits for advanced atherosclerosis by reducing CD36-mediated lipid uptake and increasing ABCG1-mediated cholesterol efflux.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo
2.
Environ Res ; 245: 117991, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141921

RESUMO

Exposure to plants is known to improve physical and mental health and living in areas of high vegetation is associated with better health. The addition of quantitative measures of greenness exposure at individual-level to other objective and subjective study measures will help establish cause-and-effect relationships between greenspaces and human health. Because limonene is one of the most abundant biogenic volatile organic compounds emitted by plants, we hypothesized that urinary metabolites of inhaled limonene can serve as biomarkers of exposure to greenness. To test our hypothesis, we analyzed urine samples collected from eight human volunteers after limonene inhalation or after greenness exposure using liquid chromatography-high resolution mass spectrometry-based profiling. Eighteen isomers of nine metabolites were detected in urine after limonene inhalation, and their kinetic parameters were estimated using nonlinear mixed effect models. Urinary levels of most abundant limonene metabolites were elevated after brief exposure to a forested area, and the ratio of urinary limonene metabolites provided evidence of recent exposure. The identities and structures of these metabolites were validated using stable isotope tracing and tandem mass spectral comparison. Together, these data suggest that urinary metabolites of limonene, especially uroterpenol glucuronide and dihydroperillic acid glucuronide, could be used as individualized biomarkers of greenness exposure.


Assuntos
Glucuronídeos , Plantas , Humanos , Limoneno , Glucuronídeos/urina , Espectrometria de Massa com Cromatografia Líquida , Biomarcadores/urina
3.
Semin Cancer Biol ; 86(Pt 2): 491-498, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35341912

RESUMO

Immune check point inhibitors (ICIs) have marked their existence in the field of cancer immunotherapy. Their existence dates to 2011 when the first anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) got its FDA approval for the management of metastatic melanoma. The class of ICIs now also include antibodies against programmed cell death-1 (PD-1) and its ligand (PD-L1) which immediately gained FDA approval for use against multiple cancer types because of their effect on patient survival. These discoveries were followed by a significant rise in the identification of novel ICIs with potential anti-tumor response. Researchers have identified various novel checkpoint inhibitors which are currently under clinical trials. Despite the success of ICIs, only a small subset of patients with specific tumor types achieves a promising response. Not only efficient therapeutic response but also development of resistance, recurrence and other immune-related adverse effects limit the applicability of immune checkpoint inhibitors. These challenges can only be addressed when a directed approach is implemented at both basic and translational level. In this review, we have briefly discussed the history of ICIs, the next generation of inhibitors which are currently under clinical trial and mechanisms of resistance that can lead to treatment failure. Ultimately, by combining these insights researchers might be able to achieve a more durable and effective response in cancer patients.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Receptor de Morte Celular Programada 1 , Imunoterapia , Melanoma/tratamento farmacológico
4.
Semin Cancer Biol ; 86(Pt 3): 137-150, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35341913

RESUMO

Immune checkpoint proteins (ICP) are currently one of the most novel and promising areas of immune-oncology research. This novel way of targeting tumor cells has shown favorable success over the past few years with some FDA approvals such as Ipilimumab, Nivolumab, Pembrolizumab etc. Currently, more than 3000 clinical trials of immunotherapeutic agents are ongoing with majority being ICPs. However, as the number of trials increase so do the challenges. Some challenges such as adverse side effects, non-specific binding on healthy tissues and absence of response in some subset populations are critical obstacles. For a safe and effective further therapeutic development of molecules targeting ICPs, understanding their mechanism at molecular level is crucial. Since ICPs are mostly membrane bound receptors, a number of downstream signaling pathways divaricate following ligand-receptor binding. Most ICPs are expressed on more than one type of immune cell populations. Further, the expression varies within a cell type. This naturally varied expression pattern adds to the difficulty of targeting specific effector immune cell types against cancer. Hence, understanding the expression pattern and cellular mechanism helps lay out the possible effect of any immunotherapy. In this review, we discuss the signaling mechanism, expression pattern among various immune cells and molecular interactions derived using interaction database analysis (BioGRID).


Assuntos
Proteínas de Checkpoint Imunológico , Neoplasias , Humanos , Receptor de Morte Celular Programada 1 , Imunoterapia , Antígeno CTLA-4 , Neoplasias/terapia , Fatores Imunológicos
5.
Vasc Med ; 28(1): 18-27, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36503365

RESUMO

BACKGROUND: Circulating angiogenic cells (CACs) are indicative of vascular health and repair capacity; however, their relationship with chronic e-cigarette use is unclear. This study aims to assess the association between e-cigarette use and CAC levels. METHODS: We analyzed CAC levels in 324 healthy participants aged 21-45 years from the cross-sectional Cardiovascular Injury due to Tobacco Use study in four groups: never tobacco users (n = 65), sole e-cigarette users (n = 19), sole combustible cigarette users (n = 212), and dual users (n = 28). A total of 15 CAC subpopulations with four cell surface markers were measured using flow cytometry: CD146 (endothelial), CD34 (stem), CD45 (leukocyte), and AC133 (early progenitor/stem). Generalized linear models with gamma distribution and log-link were generated to assess association between CACs and smoking status. Benjamini-Hochberg were used to adjust p-values for multiple comparisons. RESULTS: The cohort was 47% female, 51% Black/African American, with a mean (± SD) age of 31 ± 7 years. Sole cigarette use was significantly associated with higher levels of two endothelial marker CACs (Q ⩽ 0.05). Dual users had higher levels of four endothelial marker CACs and one early progenitor/stem marker CAC (Q ⩽ 0.05). Sole e-cigarette users had higher levels of one endothelial and one leukocyte marker CAC (Q ⩽ 0.05). CONCLUSION: Dual use of e-cigarettes and combustible cigarettes was associated with higher levels of endothelial origin CACs, indicative of vascular injury. Sole use of e-cigarettes was associated with higher endothelial and inflammatory CACs, suggesting ongoing systemic injury. Distinct patterns of changes in CAC subpopulations suggest that CACs may be informative biomarkers of changes in vascular health due to tobacco product use.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Humanos , Feminino , Adulto Jovem , Masculino , Vaping/efeitos adversos , Estudos Transversais , Biomarcadores
6.
Environ Sci Technol ; 57(29): 10563-10573, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37432892

RESUMO

Urinary mercapturic acids (MAs) are often used as biomarkers for monitoring human exposures to occupational and environmental xenobiotics. In this study, we developed an integrated library-guided analysis workflow using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry. This method includes expanded assignment criteria and a curated library of 220 MAs and addresses the shortcomings of previous untargeted approaches. We employed this workflow to profile MAs in the urine of 70 participants─40 nonsmokers and 30 smokers. We found approximately 500 MA candidates in each urine sample, and 116 MAs from 63 precursors were putatively annotated. These include 25 previously unreported MAs derived mostly from alkenals and hydroxyalkenals. Levels of 68 MAs were comparable in nonsmokers and smokers, 2 MAs were higher in nonsmokers, and 46 MAs were elevated in smokers. These included MAs of polycyclic aromatic hydrocarbons and hydroxyalkenals and those derived from toxicants present in cigarette smoke (e.g., acrolein, 1,3-butadiene, isoprene, acrylamide, benzene, and toluene). Our workflow allowed profiling of known and unreported MAs from endogenous and environmental sources, and the levels of several MAs were increased in smokers. Our method can also be expanded and applied to other exposure-wide association studies.


Assuntos
Acetilcisteína , Espectrometria de Massas em Tandem , Humanos , Acetilcisteína/urina , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Acroleína , Biomarcadores
7.
Environ Res ; 221: 115228, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610539

RESUMO

While occupational exposures to volatile organic compounds (VOCs) have been linked to steatohepatitis and liver cancer in industrial workers, recent findings have also positively correlated low-dose, residential VOC exposures with liver injury markers. VOC sources are numerous; factors including biological make up (sex), socio-cultural constructs (gender, race) and lifestyle (smoking) can influence both VOC exposure levels and disease outcomes. Therefore, the current study's objective is to investigate how sex and race influence associations between residential VOC exposures and liver injury markers particularly in smokers vs. nonsmokers. Subjects (n = 663) were recruited from residential neighborhoods; informed consent was obtained. Exposure biomarkers included 16 urinary VOC metabolites. Serological disease biomarkers included liver enzymes, direct bilirubin, and hepatocyte death markers (cytokeratin K18). Pearson correlations and generalized linear models were conducted. Models were adjusted for common liver-related confounders and interaction terms. The study population constituted approximately 60% females (n = 401) and 40% males (n = 262), and a higher percent of males were smokers and/or frequent drinkers. Both sexes had a higher percent of White (75% females, 82% males) vs. Black individuals. Positive associations were identified for metabolites of acrolein, acrylamide, acrylonitrile, butadiene, crotonaldehyde, and styrene with alkaline phosphatase (ALP), a biomarker for cholestatic injury; and for the benzene metabolite with bilirubin; only in females. These associations were retained in female smokers. Similar associations were also observed between these metabolites and ALP only in White individuals (n = 514). In Black individuals (n = 114), the styrene metabolite was positively associated with aspartate transaminase. Interaction models indicated that positive associations for acrylamide/crotonaldehyde metabolites with ALP in females were dose-dependent. Most VOC associations with K18 markers were negative in this residential population. Overall, the findings demonstrated that biological sex, race, and smoking status influence VOC effects on liver injury and underscored the role of biological-social-lifestyle factor(s) interactions when addressing air pollution-related health disparities.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Masculino , Humanos , Feminino , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Fígado/química , Biomarcadores/urina , Acrilamidas , Estirenos
8.
Mol Ther ; 30(7): 2584-2602, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35331907

RESUMO

The Sonic hedgehog-activated subgroup of medulloblastoma (SHH-MB) is one of the most common malignant pediatric brain tumors. Recent clinical studies and genomic databases indicate that GABAA receptor holds significant clinical relevance as a therapeutic target for pediatric MB. Herein, we report that "moxidectin," a GABAA receptor agonist, inhibits the proliferation of Daoy, UW426, UW228, ONS76, and PFSK1 SHH-MB cells by inducing apoptosis. Immunoblotting and immunofluorescence microscopy demonstrated that moxidectin significantly induced GABAA receptor expression and inhibited cyclic AMP (cAMP)-mediated protein kinase A (PKA)-cAMP response element-binding protein (CREB)-Gli1 signaling in SHH-MB. Gli1 and the downstream effector cancer stem cell (CSC) molecules such as Pax6, Oct4, Sox2, and Nanog were also inhibited by moxidectin treatment. Interestingly, moxidectin also inhibited the expression of MDR1. Mechanistic studies using pharmacological or genetic inhibitors/activators of PKA and Gli1 confirmed that the anti-proliferative and apoptotic effects of moxidectin were mediated through inhibition of PKA-Gli1 signaling. Oral administration of 2.5 mg/kg moxidectin suppressed the growth of SHH-MB tumors by 55%-80% in subcutaneous and intracranial tumor models in mice. Ex vivo analysis of excised tumors confirmed the observations made in the in vitro studies. Moxidectin is an FDA-approved drug with an established safety record, therefore any positive findings from our studies will prompt its further clinical investigation for the treatment of MB patients.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Criança , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Agonistas de Receptores de GABA-A/farmacologia , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Receptores de GABA-A , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/farmacologia
9.
Semin Cancer Biol ; 68: 75-83, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31618686

RESUMO

The recent development of high throughput compound screening has allowed drug repurposing to emerge as an effective avenue for discovering novel treatments for cancer. FDA-approved antipsychotic drugs fluspirilene, penfluridol, and pimozide are clinically used for the treatment of psychotic disorders, primarily schizophrenia. These compounds, belong to diphenylbutylpiperidine class of antipsychotic drugs, are the potent inhibitors of dopamine D2 receptor and calcium channel. A correlation has been found that patients treated for schizophrenia have lower incidences of certain types of cancer, such as respiratory, prostate, and bladder cancers. These compounds have also been shown to inhibit cancer proliferation in a variety of cancer cells, including melanoma, lung carcinoma, breast cancer, pancreatic cancer, glioma, and prostate cancer, among others. Antipsychotic drugs induce apoptosis and suppress metastasis in in vitro and in vivo models through mechanisms involving p53, STAT3, STAT5, protein phosphatase 2A, cholesterol homeostasis, integrins, autophagy, USP1, wnt/ß-catenin signaling, and DNA repair. Additionally, pre-clinical evidence suggests that penfluridol and pimozide act synergistically with existing chemotherapeutic agents, such as dasatinib, temozolomide, and cisplatin. Some studies have also reported that the cytotoxic activity of the antipsychotics is selective for dividing cells. Based on this growing body of evidence and the availability and previous FDA-approval of the drugs, the compounds appear to be promising anti-cancer agents.


Assuntos
Antineoplásicos/uso terapêutico , Antipsicóticos/uso terapêutico , Butirofenonas/química , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Piperidinas/química , Animais , Humanos
10.
Semin Cancer Biol ; 68: 279-290, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32437876

RESUMO

Cancer continues to be one of the leading contributors towards global disease burden. According to NIH, cancer incidence rate per year will increase to 23.6 million by 2030. Even though cancer continues to be a major proportion of the disease burden worldwide, it has the lowest clinical trial success rate amongst other diseases. Hence, there is an unmet need for novel, affordable and effective anti-neoplastic medications. As a result, a growing interest has sparkled amongst researchers towards drug repurposing. Drug repurposing follows the principle of polypharmacology, which states, "any drug with multiple targets or off targets can present several modes of action". Drug repurposing also known as drug rechanneling, or drug repositioning is an economic and reliable approach that identifies new disease treatment of already approved drugs. Repurposing guarantees expedited access of drugs to the patients as these drugs are already FDA approved and their safety and toxicity profile is completely established. Epidemiological studies have identified the decreased occurrence of oncological or non-oncological conditions in patients undergoing treatment with FDA approved drugs. Data from multiple experimental studies and clinical observations have depicted that several non-neoplastic drugs have potential anticancer activity. In this review, we have summarized the potential anti-cancer effects of anti-psychotic, anti-malarial, anti-viral and anti-emetic drugs with a brief overview on their mechanism and pathways in different cancer types. This review highlights promising evidences for the repurposing of drugs in oncology.


Assuntos
Antineoplásicos/uso terapêutico , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Animais , Humanos
11.
Toxicol Appl Pharmacol ; 437: 115877, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35045333

RESUMO

OBJECTIVE: Volatile organic compounds (VOCs) are airborne toxicants abundant in outdoor and indoor air. High levels of VOCs are also present at various Superfund and other hazardous waste sites; however, little is known about the cardiovascular effects of VOCs. We hypothesized that ambient exposure to VOCs exacerbate cardiovascular disease (CVD) risk by depleting circulating angiogenic cells (CACs). APPROACH AND RESULTS: In this cross-sectional study, we recruited 603 participants with low-to-high CVD risk and measured 15 subpopulations of CACs by flow cytometry and 16 urinary metabolites of 12 VOCs by LC/MS/MS. Associations between CAC and VOC metabolite levels were examined using generalized linear models in the total sample, and separately in non-smokers. In single pollutant models, metabolites of ethylbenzene/styrene and xylene, were negatively associated with CAC levels in both the total sample, and in non-smokers. The metabolite of acrylonitrile was negatively associated with CD45dim/CD146+/CD34+/AC133+ cells and CD45+/CD146+/AC133+, and the toluene metabolite with AC133+ cells. In analysis of non-smokers (n = 375), multipollutant models showed a negative association with metabolites of ethylbenzene/styrene, benzene, and xylene with CD45dim/CD146+/CD34+ cells, independent of other VOC metabolite levels. Cumulative VOC risk score showed a strong negative association with CD45dim/CD146+/CD34+ cells, suggesting that total VOC exposure has a cumulative effect on pro-angiogenic cells. We found a non-linear relationship for benzene, which showed an increase in CAC levels at low, but depletion at higher levels of exposure. Sex and race, hypertension, and diabetes significantly modified VOC associated CAC depletion. CONCLUSION: Low-level ambient exposure to VOCs is associated with CAC depletion, which could compromise endothelial repair and angiogenesis, and exacerbate CVD risk.


Assuntos
Poluentes Atmosféricos/toxicidade , Endotélio Vascular/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Compostos Orgânicos Voláteis/toxicidade , Adulto , Idoso , Poluentes Atmosféricos/química , Biomarcadores , Feminino , Substâncias Perigosas , Humanos , Masculino , Pessoa de Meia-Idade , Estrutura Molecular , Fumar , Compostos Orgânicos Voláteis/química
12.
Chem Res Toxicol ; 35(2): 283-292, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044764

RESUMO

Despite the increasing popularity of e-cigarettes, their long-term health effects remain unknown. In animal models, exposure to e-cigarette has been reported to result in pulmonary and cardiovascular injury, and in humans, the acute use of e-cigarettes increases heart rate and blood pressure and induces endothelial dysfunction. In both animal models and humans, cardiovascular dysfunction associated with e-cigarettes has been linked to reactive aldehydes such as formaldehyde and acrolein generated in e-cigarette aerosols. These aldehydes are known products of heating and degradation of vegetable glycerin (VG) present in e-liquids. Here, we report that in mice, acute exposure to a mixture of propylene glycol:vegetable glycerin (PG:VG) or to e-cigarette-derived aerosols significantly increased the urinary excretion of acrolein and glycidol metabolites─3-hydroxypropylmercapturic acid (3HPMA) and 2,3-dihydroxypropylmercapturic acid (23HPMA)─as measured by UPLC-MS/MS. In humans, the use of e-cigarettes led to an increase in the urinary levels of 23HPMA but not 3HPMA. Acute exposure of mice to aerosols derived from PG:13C3-VG significantly increased the 13C3 enrichment of both urinary metabolites 13C3-3HPMA and 13C3-23HPMA. Our stable isotope tracing experiments provide further evidence that thermal decomposition of vegetable glycerin in the e-cigarette solvent leads to generation of acrolein and glycidol. This suggests that the adverse health effects of e-cigarettes may be attributable in part to these reactive compounds formed through the process of aerosolizing nicotine. Our findings also support the notion that 23HPMA, but not 3HPMA, may be a relatively specific biomarker of e-cigarette use.


Assuntos
Acroleína/química , Sistemas Eletrônicos de Liberação de Nicotina , Compostos de Epóxi/química , Aromatizantes/química , Propanóis/química , Acroleína/metabolismo , Acroleína/urina , Aerossóis/química , Animais , Biomarcadores , Cromatografia Líquida de Alta Pressão , Compostos de Epóxi/metabolismo , Compostos de Epóxi/urina , Aromatizantes/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Propanóis/metabolismo , Propanóis/urina , Solventes , Vaping
13.
J Immunol ; 204(4): 990-1000, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31900334

RESUMO

In the metastasis-targeted organs, angiogenesis is essential for the progression of dormant micrometastases to rapidly growing and clinically overt lesions. However, we observed changes suggesting angiogenic switching in the mouse lungs prior to arrival of tumor cells (i.e., in the premetastatic niche) in the models of breast carcinoma. This angiogenic switching appears to be caused by myeloid-derived suppressor cells recruited to the premetastatic lungs through complement C5a receptor 1 signaling. These myeloid cells are known to secrete several proangiogenic factors in tumors, including IL-1ß and matrix metalloproteinase-9, and we found upregulation of these genes in the premetastatic lungs. Blockade of C5a receptor 1 synergized with antiangiogenic Listeria monocytogenes-based vaccines to decrease the lung metastatic burden by reducing vascular density and improving antitumor immunity in the lungs. This was mediated even when growth of primary breast tumors was not affected by these treatments. This work provides initial evidence that angiogenesis contributes to the premetastatic niche in rapidly progressing cancers and that inhibiting this process through immunotherapy is beneficial for reducing or even preventing metastasis.


Assuntos
Vacinas Anticâncer/administração & dosagem , Neoplasias Pulmonares/terapia , Neoplasias Mamárias Experimentais/terapia , Células Supressoras Mieloides/imunologia , Neovascularização Patológica/terapia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Terapia Combinada/métodos , Complemento C5a/imunologia , Complemento C5a/metabolismo , Feminino , Humanos , Imunoterapia/métodos , Listeria monocytogenes/imunologia , Pulmão/irrigação sanguínea , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Células Supressoras Mieloides/metabolismo , Metástase Neoplásica/imunologia , Metástase Neoplásica/terapia , Neovascularização Patológica/imunologia , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Microambiente Tumoral/imunologia
14.
Environ Toxicol ; 37(2): 245-255, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34717031

RESUMO

Vinyl chloride (VC) is an organochlorine mainly used to manufacture its polymer polyvinyl chloride, which is extensively used in the manufacturing of consumer products. Recent studies suggest that chronic low dose VC exposure affects glucose homeostasis in high fat diet-fed mice. Our data suggest that even in the absence of high fat diet, exposure to VC (0.8 ppm, 6 h/day, 5 day/week, for 12 weeks) induces glucose intolerance (1.0 g/kg, i.p.) in male C57BL/6 mice. This was accompanied with the depletion of hepatic glutathione and a modest increase in lung interstitial macrophages. VC exposure did not affect the levels of circulating immune cells, endothelial progenitor cells, platelet-immune cell aggregates, and cytokines and chemokines. The acute challenge of VC-exposed mice with LPS did not affect lung immune cell composition or plasma IL-6. To examine the effect of VC exposure on vascular inflammation and atherosclerosis, LDL receptor-KO mice on C57BL/6 background maintained on western diet were exposed to VC for 12 weeks (0.8 ppm, 6 h/day, 5 day/week). Unlike the WT C57BL/6 mice, VC exposure did not affect glucose tolerance in the LDL receptor-KO mice. Plasma cytokines, lesion area in the aortic valve, and markers of lesional inflammation in VC-exposed LDL receptor-KO mice were comparable with the air-exposed controls. Collectively, despite impaired glucose tolerance and modest pulmonary inflammation, chronic low dose VC exposure does not affect surrogate markers of cardiovascular injury, LPS-induced acute inflammation in C57BL/6 mice, and chronic inflammation and atherosclerosis in the LDL receptor-KO mice.


Assuntos
Doenças Cardiovasculares , Cloreto de Vinil , Animais , Dieta Hiperlipídica , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cloreto de Vinil/toxicidade
15.
Semin Cell Dev Biol ; 96: 4-12, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31054324

RESUMO

CRISPR-Cas9 is an RNA guided endonuclease that has revolutionized the ability to edit genome and introduce desired manipulations in the target genomic sequence. It is a flexible methodology and is capable of targeting multiple loci simultaneously. Owing to the fact that cancer is an amalgamation of several genetic mutations, application of CRISPR-Cas9 technology is considered as a novel strategy to combat cancer. Genetic and epigenetic modulations in cancer leads to development of resistance to conventional therapy options. Given the abundance of transcriptomic and genomic alterations in cancer, developing a strategy to decipher these alterations is critical. CRISPR-Cas9 system has proven to be a promising tool in generating cellular and animal models to mimic the mutations and understand their role in tumorigenesis. CRISPR-Cas9 is an upheaval in the field of cancer immunotherapy. Furthermore, CRISPR-Cas9 plays an important role in the development of whole genome libraries for cancer patients. This approach will help understand the diversity in genome variation among the patients and also, will provide multiple variables to scientists to investigate and improvise cancer therapy. This review will focus on the discovery of CRISPR-Cas9 system, mechanisms behind CRISPR technique and its current status as a potential tool for investigating the genomic mutations associated with all cancer types.


Assuntos
Sistemas CRISPR-Cas/genética , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Humanos , Neoplasias/imunologia
16.
Am J Physiol Heart Circ Physiol ; 320(4): H1510-H1525, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33543686

RESUMO

After more than a decade of electronic cigarette (E-cig) use in the United States, uncertainty persists regarding E-cig use and long-term cardiopulmonary disease risk. As all E-cigs use propylene glycol and vegetable glycerin (PG-VG) and generate abundant saturated aldehydes, mice were exposed by inhalation to PG-VG-derived aerosol, formaldehyde (FA), acetaldehyde (AA), or filtered air. Biomarkers of exposure and cardiopulmonary injury were monitored by mass spectrometry (urine metabolites), radiotelemetry (respiratory reflexes), isometric myography (aorta), and flow cytometry (blood markers). Acute PG-VG exposure significantly affected multiple biomarkers including pulmonary reflex (decreased respiratory rate, -50%), endothelium-dependent relaxation (-61.8 ± 4.2%), decreased WBC (-47 ± 7%), and, increased RBC (+6 ± 1%) and hemoglobin (+4 ± 1%) versus air control group. Notably, FA exposure recapitulated the prominent effects of PG-VG aerosol on pulmonary irritant reflex and endothelial dysfunction, whereas AA exposure did not. To attempt to link PG-VG exposure with FA or AA exposure, urinary formate and acetate levels were measured by GC-MS. Although neither FA nor AA exposure altered excretion of their primary metabolite, formate or acetate, respectively, compared with air-exposed controls, PG-VG aerosol exposure significantly increased post-exposure urinary acetate but not formate. These data suggest that E-cig use may increase cardiopulmonary disease risk independent of the presence of nicotine and/or flavorings. This study indicates that FA levels in tobacco product-derived aerosols should be regulated to levels that do not induce biomarkers of cardiopulmonary harm. There remains a need for reliable biomarkers of exposure to inhaled FA and AA.NEW & NOTEWORTHY Use of electronic cigarettes (E-cig) induces endothelial dysfunction (ED) in healthy humans, yet the specific constituents in E-cig aerosols that contribute to ED are unknown. Our study implicates formaldehyde that is formed in heating of E-cig solvents (propylene glycol, PG; vegetable glycerin, VG). Exposure to formaldehyde or PG-VG-derived aerosol alone stimulated ED in female mice. As ED was independent of nicotine and flavorants, these data reflect a "universal flaw" of E-cigs that use PG-VG.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/e-cigarettes-aldehydes-and-endothelial-dysfunction/.


Assuntos
Acetaldeído/toxicidade , Aorta Torácica/efeitos dos fármacos , Vapor do Cigarro Eletrônico/toxicidade , Endotélio Vascular/efeitos dos fármacos , Formaldeído/toxicidade , Glicerol/toxicidade , Pulmão/efeitos dos fármacos , Propilenoglicol/toxicidade , Solventes/toxicidade , Acetaldeído/urina , Aerossóis , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Biomarcadores/sangue , Biomarcadores/urina , Vapor do Cigarro Eletrônico/urina , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Feminino , Formaldeído/urina , Exposição por Inalação , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Respiração/efeitos dos fármacos , Medição de Risco , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
17.
Toxicol Appl Pharmacol ; 431: 115742, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624356

RESUMO

Benzene is a ubiquitous environmental pollutant. Recent population-based studies suggest that benzene exposure is associated with an increased risk for cardiovascular disease. However, it is unclear whether benzene exposure by itself is sufficient to induce cardiovascular toxicity. We examined the effects of benzene inhalation (50 ppm, 6 h/day, 5 days/week, 6 weeks) or HEPA-filtered air exposure on the biomarkers of cardiovascular toxicity in male C57BL/6J mice. Benzene inhalation significantly increased the biomarkers of endothelial activation and injury including endothelial microparticles, activated endothelial microparticles, endothelial progenitor cell microparticles, lung endothelial microparticles, and activated lung and endothelial microparticles while having no effect on circulating levels of endothelial adhesion molecules, endothelial selectins, and biomarkers of angiogenesis. To understand how benzene may induce endothelial injury, we exposed human aortic endothelial cells to benzene metabolites. Of the metabolites tested, trans,trans-mucondialdehyde (10 µM, 18h) was the most toxic. It induced caspases-3, -7 and -9 (intrinsic pathway) activation and enhanced microparticle formation by 2.4-fold. Levels of platelet-leukocyte aggregates, platelet macroparticles, and a proportion of CD4+ and CD8+ T-cells were also significantly elevated in the blood of the benzene-exposed mice. We also found that benzene exposure increased the transcription of genes associated with endothelial cell and platelet activation in the liver; and induced inflammatory genes and suppressed cytochrome P450s in the lungs and the liver. Together, these data suggest that benzene exposure induces endothelial injury, enhances platelet activation and inflammatory processes; and circulatory levels of endothelial cell and platelet-derived microparticles and platelet-leukocyte aggregates are excellent biomarkers of cardiovascular toxicity of benzene.


Assuntos
Benzeno/toxicidade , Doenças Cardiovasculares/induzido quimicamente , Sistema Cardiovascular/efeitos dos fármacos , Animais , Doenças Assintomáticas , Benzeno/administração & dosagem , Biomarcadores/sangue , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Plaquetas/patologia , Cardiotoxicidade , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/patologia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Exposição por Inalação , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , Camundongos Endogâmicos C57BL
18.
Circ Res ; 124(4): e6-e19, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30595089

RESUMO

RATIONALE: Atherosclerosis is, in part, caused by immune and inflammatory cell infiltration into the vascular wall, leading to enhanced inflammation and lipid accumulation in the aortic endothelium. Understanding the molecular mechanisms underlying this disease is critical for the development of new therapies. Our recent studies demonstrate that epsins, a family of ubiquitin-binding endocytic adaptors, are critical regulators of atherogenicity. Given the fundamental contribution lesion macrophages make to fuel atherosclerosis, whether and how myeloid-specific epsins promote atherogenesis is an open and significant question. OBJECTIVE: We will determine the role of myeloid-specific epsins in regulating lesion macrophage function during atherosclerosis. METHODS AND RESULTS: We engineered myeloid cell-specific epsins double knockout mice (LysM-DKO) on an ApoE-/- background. On Western diet, these mice exhibited marked decrease in atherosclerotic lesion formation, diminished immune and inflammatory cell content in aortas, and reduced necrotic core content but increased smooth muscle cell content in aortic root sections. Epsins deficiency hindered foam cell formation and suppressed proinflammatory macrophage phenotype but increased efferocytosis and anti-inflammatory macrophage phenotype in primary macrophages. Mechanistically, we show that epsin loss specifically increased total and surface levels of LRP-1 (LDLR [low-density lipoprotein receptor]-related protein 1), an efferocytosis receptor with antiatherosclerotic properties. We further show that epsin and LRP-1 interact via epsin's ubiquitin-interacting motif domain. ox-LDL (oxidized LDL) treatment increased LRP-1 ubiquitination, subsequent binding to epsin, and its internalization from the cell surface, suggesting that epsins promote the ubiquitin-dependent internalization and downregulation of LRP-1. Crossing ApoE-/-/LysM-DKO mice onto an LRP-1 heterozygous background restored, in part, atherosclerosis, suggesting that epsin-mediated LRP-1 downregulation in macrophages plays a pivotal role in propelling atherogenesis. CONCLUSIONS: Myeloid epsins promote atherogenesis by facilitating proinflammatory macrophage recruitment and inhibiting efferocytosis in part by downregulating LRP-1, implicating that targeting epsins in macrophages may serve as a novel therapeutic strategy to treat atherosclerosis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Aterosclerose/metabolismo , Regulação para Baixo , Receptores de LDL/genética , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Células Cultivadas , Deleção de Genes , Células HEK293 , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Macrófagos/metabolismo , Camundongos , Células Mieloides/metabolismo , Células RAW 264.7 , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação
19.
Vasc Med ; 26(5): 483-488, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34013801

RESUMO

Electronic cigarette use has especially risen among adolescents and young adults. The aim of this study was to investigate fasting blood glucose and lipid profiles in chronic combustible cigarette and electronic cigarette users. We evaluated participants aged 21 to 45 (n = 525, mean age 31 ± 7 years, 45% women) without established cardiovascular disease or risk factors who were combustible cigarette users (n = 290), electronic cigarette users (n = 131; 65 sole users and 66 dual users), or never users (n = 104). In the first wave of enrollment (2014-2017), electronic cigarette users reported their products as first, second and third generation devices (e-cig users) and were all largely current (i.e., dual) or former (sole) combustible cigarette users, whereas in the second wave of enrollment (2019-2020), electronic cigarette users all reported pod-based device use (pod users) and included more sole users who were never smokers. In multivariable-adjusted analyses comparing to never users, both sole e-cig users and combustible cigarette users had higher glucose and triglycerides and lower high-density lipoprotein (HDL) cholesterol levels. Dual e-cig users showed higher triglycerides and very-low-density lipoprotein cholesterol, and lower HDL cholesterol compared to never users. In contrast, pod users (both sole and dual) had lipid profiles and glucose levels similar to never users. Overall, users of early generation electronic cigarettes display adverse metabolic profiles. In contrast, pod-based electronic cigarette users have similar lipid profiles to never users. Future studies are needed to understand the cumulative effects of electronic cigarette use on cardiometabolic health.


Assuntos
Glicemia , HDL-Colesterol , Sistemas Eletrônicos de Liberação de Nicotina , Triglicerídeos , Vaping , Adolescente , Adulto , HDL-Colesterol/sangue , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fumantes , Triglicerídeos/sangue , Vaping/efeitos adversos , Adulto Jovem
20.
Environ Res ; 196: 110903, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33636185

RESUMO

BACKGROUND: Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Exposure to air pollution, specifically particulate matter of diameter ≤2.5 µm (PM2.5), is a well-established risk factor for CVD. However, the contribution of gaseous pollutant exposure to CVD risk is less clear. OBJECTIVE: To examine the vascular effects of exposure to individual volatile organic compounds (VOCs) and mixtures of VOCs. METHODS: We measured urinary metabolites of acrolein (CEMA and 3HPMA), 1,3-butadiene (DHBMA and MHBMA3), and crotonaldehyde (HPMMA) in 346 nonsmokers with varying levels of CVD risk. On the day of enrollment, we measured blood pressure (BP), reactive hyperemia index (RHI - a measure of endothelial function), and urinary levels of catecholamines and their metabolites. We used generalized linear models for evaluating the association between individual VOC metabolites and BP, RHI, and catecholamines, and we used Bayesian Kernel Machine Regression (BKMR) to assess exposure to VOC metabolite mixtures and BP. RESULTS: We found that the levels of 3HPMA were positively associated with systolic BP (0.98 mmHg per interquartile range (IQR) of 3HPMA; CI: 0.06, 1.91; P = 0.04). Stratified analysis revealed an increased association with systolic BP in Black participants despite lower levels of urinary 3HPMA. This association was independent of PM2.5 exposure and BP medications. BKMR analysis confirmed that 3HPMA was the major metabolite associated with higher BP in the presence of other metabolites. We also found that 3HPMA and DHBMA were associated with decreased endothelial function. For each IQR of 3HPMA or DHBMA, there was a -4.4% (CI: -7.2, -0.0; P = 0.03) and a -3.9% (CI: -9.4, -0.0; P = 0.04) difference in RHI, respectively. Although in the entire cohort the levels of several urinary VOC metabolites were weakly associated with urinary catecholamines and their metabolites, in Black participants, DHBMA levels showed strong associations with urinary norepinephrine and normetanephrine levels. DISCUSSION: Exposure to acrolein and 1,3-butadiene is associated with endothelial dysfunction and may contribute to elevated risk of hypertension in participants with increased sympathetic tone, particularly in Black individuals.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Acroleína , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Aldeídos , Teorema de Bayes , Butadienos , Exposição Ambiental/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , Material Particulado/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA