Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Chem Soc Rev ; 50(11): 6541-6568, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100034

RESUMO

Graphene nanoribbons hold great promise for future applications in nanoelectronic devices, as they may combine the excellent electronic properties of graphene with the opening of an electronic band gap - not present in graphene but required for transistor applications. With a two-step on-surface synthesis process, graphene nanoribbons can be fabricated with atomic precision, allowing precise control over width and edge structure. Meanwhile, a decade of research has resulted in a plethora of graphene nanoribbons having various structural and electronic properties. This article reviews not only the on-surface synthesis of atomically precise graphene nanoribbons but also how their electronic properties are ultimately linked to their structure. Current knowledge and considerations with respect to precursor design, which eventually determines the final (electronic) structure, are summarized. Special attention is dedicated to the electronic properties of graphene nanoribbons, also in dependence on their width and edge structure. It is exactly this possibility of precisely changing their properties by fine-tuning the precursor design - offering tunability over a wide range - which has generated this vast research interest, also in view of future applications. Thus, selected device prototypes are presented as well.

2.
Nat Mater ; 19(3): 330-337, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31959952

RESUMO

Self-assembled monolayers (SAMs) are widely used to engineer the surface properties of metals. The relatively simple and versatile chemistry of metal-thiolate bonds makes thiolate SAMs the preferred option in a range of applications, yet fragility and a tendency to oxidize in air limit their long-term use. Here, we report the formation of thiol-free self-assembled mono- and bilayers of glycol ethers, which bind to the surface of coinage metals through the spontaneous chemisorption of glycol ether-functionalized fullerenes. As-prepared assemblies are bilayers presenting fullerene cages at both the substrate and ambient interface. Subsequent exposure to functionalized glycol ethers displaces the topmost layer of glycol ether-functionalized fullerenes, and the resulting assemblies expose functional groups to the ambient interface. These layers exhibit the key properties of thiolate SAMs, yet they are stable to ambient conditions for several weeks, as shown by the performance of tunnelling junctions formed from SAMs of alkyl-functionalized glycol ethers. Glycol ether-functionalized spiropyrans incorporated into mixed monolayers lead to reversible, light-driven conductance switching. Self-assemblies of glycol ethers are drop-in replacements for thiolate SAMs that retain all of their useful properties while avoiding the drawbacks of metal-thiolate bonds.

3.
Chemistry ; 27(1): 207-211, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32893412

RESUMO

The development of new strategies for the preparation of multicomponent supramolecular assemblies is a major challenge on the road to complex functional molecular systems. Here we present the use of a non-porous self-assembled monolayer from uC33 -NDI-uC33 , a naphthalenediimide symmetrically functionalized with unsaturated 33 carbon-atom-chains, to prepare bicomponent supramolecular surface systems with a series of alkoxy-pyrene (PyrOR) derivatives at the liquid/HOPG interface. While previous attempts at directly depositing many of these PyrOR units at the liquid/HOPG interface failed, the multicomponent approach through the uC33 -NDI-uC33 template enabled control over molecular interactions and facilitated adsorption. The PyrOR deposition restructured the initial uC33 -NDI-uC33 monolayer, causing an expansion in two dimensions to accommodate the guests. As far as we know, this represents the first example of a non-porous or non-metal complex-bearing monolayer that allows the stepwise formation of multicomponent supramolecular architectures on surfaces.

4.
Chemistry ; 27(48): 12430-12436, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34153154

RESUMO

The self-assembly of a nickel-porphyrin derivative (Ni-DPPyP) containing two pyridyl coordinating sites and two pentyl chains at trans meso positions was studied with scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) on Au(111). Deposition of Ni-DPPyP onto Au(111) gave rise to a close-packed network for coverages smaller or equal to one monolayer as revealed by STM and LEED. The molecular arrangement of this two-dimensional network is stabilized via hydrogen bonds formed between the pyridyl's nitrogen and hydrogen atoms from the pyrrole groups of neighboring molecules. Subsequent deposition of cobalt atoms onto the close-packed network and post-deposition annealing at 423 K led to the formation of a Co-coordinated hexagonal porous network. As confirmed by XPS measurements, the porous network is stabilized by metal-ligand interactions between one cobalt atom and three pyridyl ligands, each pyridyl ligand coming from a different Ni-DPPyP molecule.

5.
J Am Chem Soc ; 142(8): 4070-4078, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31971383

RESUMO

Achieving long-range order with surface-supported supramolecular assemblies is one of the pressing challenges in the prospering field of non-covalent surface functionalization. Having access to defect-free on-surface molecular assemblies will pave the way for various nanotechnology applications. Here we report the synthesis of two libraries of naphthalenediimides (NDIs) symmetrically functionalized with long aliphatic chains (C28 and C33) and their self-assembly at the 1-phenyloctane/highly oriented pyrolytic graphite (1-PO/HOPG) interface. The two NDI libraries differ by the presence/absence of an internal double bond in each aliphatic chain (unsaturated and saturated compounds, respectively). All molecules assemble into lamellar arrangements, with the NDI cores lying flat and forming 1D rows on the surface, while the carbon chains separate the 1D rows from each other. Importantly, the presence of the unsaturation plays a dominant role in the arrangement of the aliphatic chains, as it exclusively favors interdigitation. The fully saturated tails, instead, self-assemble into a combination of either interdigitated or non-interdigitated diagonal arrangements. This difference in packing is spectacularly amplified at the whole surface level and results in almost defect-free self-assembled monolayers for the unsaturated compounds. In contrast, the monolayers of the saturated counterparts are globally disordered, even though they locally preserve the lamellar arrangements. The experimental observations are supported by computational studies and are rationalized in terms of stronger van der Waals interactions in the case of the unsaturated compounds. Our investigation reveals the paramount role played by internal double bonds on the self-assembly of discrete large molecules at the liquid/solid interface.

6.
Small ; 15(33): e1901741, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31264784

RESUMO

Over the past years, ultrathin films consisting of electron donating and accepting molecules have attracted increasing attention due to their potential usage in optoelectronic devices. Key parameters for understanding and tuning their performance are intermolecular and molecule-substrate interactions. Here, the formation of a monolayer thick blend of triphenylene-based organic donor and acceptor molecules from 2,3,6,7,10,11-hexamethoxytriphenylene (HAT) and 1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile (HATCN), respectively, on a silver (111) surface is reported. Scanning tunneling microscopy and spectroscopy, valence and core level photoelectron spectroscopy, as well as low-energy electron diffraction measurements are used, complemented by density functional theory calculations, to investigate both the electronic and structural properties of the homomolecular as well as the intermixed layers. The donor molecules are weakly interacting with the Ag(111) surface, while the acceptor molecules show a strong interaction with the substrate leading to charge transfer and substantial buckling of the top silver layer and of the adsorbates. Upon mixing acceptor and donor molecules, strong hybridization occurs between the two different molecules leading to the emergence of a common unoccupied molecular orbital located at both the donor and acceptor molecules. The donor acceptor blend studied here is, therefore, a compelling candidate for organic electronics based on self-assembled charge-transfer complexes.

7.
Chemistry ; 25(19): 5065-5070, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657213

RESUMO

A comparative study on the self-assembly of sexiphenyl-dicarbonitrile on highly oriented pyrolytic graphite and single-layer graphene on Cu(111) is presented. Despite an overall low molecule-substrate interaction, the close-packed structures exhibit a peculiar shift repeating every four to five molecules. This shift has hitherto not been reported for similar systems and is hence a unique feature induced by the graphitic substrates.

8.
Small ; 13(13)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28121375

RESUMO

The chiral-selective formation of 1D polymers from a prochiral molecule, namely, 6,12-dibromochrysene in dependence of the type of metal surface is demonstrated by a combined scanning tunneling microscopy and density functional theory study. Deposition of the chosen molecule on Au(111) held at room temperature leads to the formation of a 2D porous molecular network. Upon annealing at 200 °C, an achiral covalently linked polymer is formed on Au(111). On the other hand, a chiral Cu-coordinated polymer is spontaneously formed upon deposition of the molecules on Cu(111) held at room temperature. Importantly, it is found that the chiral-selectivity determines the possibility of obtaining graphene nanoribbons (GNRs). On Au(111), upon annealing at 350 °C or higher cyclo-dehydrogenation occurs transforming the achiral polymer into a GNR. In contrast, the chiral coordination polymer on Cu(111) cannot be converted into a GNR.

9.
Angew Chem Int Ed Engl ; 56(40): 12165-12169, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28772061

RESUMO

The on-surface activation of carbon-halogen groups is an efficient route to produce radicals for constructing various hydrocarbons and carbon nanostructures. To date, the employed halide precursors have only one halogen attached to a carbon atom. It is thus of interest to study the effect of attaching more than one halogen atom to a carbon atom with the aim of producing multiple unpaired electrons. By introducing an alkenyl gem-dibromide, cumulene products were fabricated on a Au(111) surface by dehalogenative homocoupling reactions. The reaction products and pathways were unambiguously characterized by a combination of high-resolution scanning tunneling microscopy and non-contact atomic force microscopy measurements together with density functional calculations. This study further supplements the database of on-surface synthesis strategies and provides a facile manner for incorporation of more complicated carbon scaffolds into surface nanostructures.

10.
Small ; 12(28): 3757-63, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27276517

RESUMO

A 2D array of electronically coupled quantum boxes is fabricated by means of on-surface self-assembly assuring ultimate precision of each box. The quantum states embedded in the boxes are configured by adsorbates, whose occupancy is controlled with atomic precision. The electronic interbox coupling can be maintained or significantly reduced by proper arrangement of empty and filled boxes.

11.
Chemistry ; 22(17): 5937-44, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26879625

RESUMO

The on-surface polymerization of 1,3,6,8-tetrabromopyrene (Br4 Py) on Cu(111) and Au(111) surfaces under ultrahigh vacuum conditions was investigated by a combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Deposition of Br4 Py on Cu(111) held at 300 K resulted in a spontaneous debromination reaction, generating the formation of a branched coordination polymer network stabilized by C-Cu-C bonds. After annealing at 473 K, the C-Cu-C bonds were converted to covalent C-C bonds, leading to the formation of a covalently linked molecular network of short oligomers. In contrast, highly ordered self-assembled two-dimensional (2D) patterns stabilized by both Br-Br halogen and Br-H hydrogen bonds were observed upon deposition of Br4 Py on Au(111) held at 300 K. Subsequent annealing of the sample at 473 K led to a dissociation of the C-Br bonds and the formation of disordered metal-coordinated molecular networks. Further annealing at 573 K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann reaction, but also influences the formation of different types of intermolecular bonds and thus, determines the final polymer network morphology. DFT calculations further support our experimental findings obtained by STM and XPS and add complementary information on the reaction pathway of Br4 Py on the different substrates.

12.
Chemistry ; 22(2): 581-9, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26636437

RESUMO

The self-assembly of cyano-functionalized triarylamine derivatives on Cu(111), Ag(111) and Au(111) was studied by means of scanning tunnelling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory calculations. Different bonding motifs, such as antiparallel dipolar coupling, hydrogen bonding and metal coordination, were observed. Whereas on Ag(111) only one hexagonally close-packed pattern stabilized by hydrogen bonding is observed, on Au(111) two different partially porous phases are present at submonolayer coverage, stabilized by dipolar coupling, hydrogen bonding and metal coordination. In contrast to the self-assembly on Ag(111) and Au(111), for which large islands are formed, on Cu(111), only small patches of hexagonally close-packed networks stabilized by metal coordination and areas of disordered molecules are found. The significant variety in the molecular self-assembly of the cyano-functionalized triarylamine derivatives on these coinage metal surfaces is explained by differences in molecular mobility and the subtle interplay between intermolecular and molecule-substrate interactions.

13.
Nano Lett ; 15(2): 917-22, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25611528

RESUMO

The epitaxial growth of graphene on catalytically active metallic surfaces via chemical vapor deposition (CVD) is known to be one of the most reliable routes toward high-quality large-area graphene. This CVD-grown graphene is generally coupled to its metallic support resulting in a modification of its intrinsic properties. Growth on oxides is a promising alternative that might lead to a decoupled graphene layer. Here, we compare graphene on a pure metallic to graphene on an oxidized copper surface in both cases grown by a single step CVD process under similar conditions. Remarkably, the growth on copper oxide, a high-k dielectric material, preserves the intrinsic properties of graphene; it is not doped and a linear dispersion is observed close to the Fermi energy. Density functional theory calculations give additional insight into the reaction processes and help explaining the catalytic activity of the copper oxide surface.

14.
J Am Chem Soc ; 136(26): 9355-63, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24960576

RESUMO

The formation of on-surface coordination polymers is controlled by the interplay of chemical reactivity and structure of the building blocks, as well as by the orientating role of the substrate registry. Beyond the predetermined patterns of structural assembly, the chemical reactivity of the reactants involved may provide alternative pathways in their aggregation. Organic molecules, which are transformed in a surface reaction, may be subsequently trapped via coordination of homo- or heterometal adatoms, which may also play a role in the molecular transformation. The amino-functionalized perylene derivative, 4,9-diaminoperylene quinone-3,10-diimine (DPDI), undergoes specific levels of dehydrogenation (-1 H2 or -3 H2) depending on the nature of the present adatoms (Fe, Co, Ni or Cu). In this way, the molecule is converted to an endo- or an exoligand, possessing a concave or convex arrangement of ligating atoms, which is decisive for the formation of either 1D or 2D coordination polymers.

15.
Phys Chem Chem Phys ; 16(19): 8881-5, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24681561

RESUMO

The self-assembly of metal-free naphthalocyanine (H2Nc) on the Au(111) surface is studied under ultrahigh vacuum conditions at room temperature using a combination of scanning tunnelling microscopy (STM), low-energy electron diffraction (LEED) and X-ray photoelectron spectroscopy (XPS). The STM measurements reveal that the molecules form a well-ordered, defect-free structure with a square-like unit cell at monolayer coverage with their molecular plane parallel to the substrate plane. The molecular lattice direction is aligned along one of the principal directions of the underlying Au(111) substrate while the molecular orientation remains unchanged for different domains. XPS measurements show that there is no significant difference in the electronic structure of H2Nc between monolayer and multilayer coverage. Combining the information obtained from STM, LEED and XPS measurements demonstrates that the self-assembled structure of H2Nc on Au(111) is mainly stabilized by intermolecular interactions while the molecule-substrate interactions are responsible for the rotational alignment of the molecules with respect to the principal Au directions.

16.
Commun Chem ; 7(1): 51, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443451

RESUMO

Methods to control chiral-selectivity in molecular reactions through external inputs are of importance, both from a fundamental and technological point of view. Here, the self-assembly of prochiral 6,12-dibromochrysene monomers on Ag(110) is studied using scanning tunneling microscopy. Deposition of the monomers on a substrate held at room temperature leads to the formation of 1D achiral organometallic polymers. When the monomers are instead deposited on a substrate held at 373 K, homochiral organometallic polymers consisting of either the left- or right-handed enantiomer are formed. Post-deposition annealing of room temperature deposited samples at >373 K does not transform the achiral 1D organometallic polymers into homochiral ones and thus, does not yield the same final structure as if depositing onto a substrate held at the same elevated temperature. Furthermore, annealing promotes neither the formation of 1D covalently-coupled polymers nor the formation of graphene nanoribbons. Our results identify substrate temperature as an important factor in on-surface chiral synthesis, thereby demonstrating the importance of considering kinetic effects and the decisive role they can play in structure formation.

17.
J Phys Chem C Nanomater Interfaces ; 128(26): 11014-11023, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38983597

RESUMO

Crucial to the performance of devices based on organic molecules is an understanding of how the substrate-molecule interface influences both structural and electronic properties of the molecular layers. Within this context we studied the self-assembly of an alkoxy-triphenylene derived electron donor (HAT) in the monolayer regime on graphene/Ni(111). The molecules assembled into a close-packed hexagonal network commensurate with the graphene layer. Despite the commensurate structure, the HAT molecules only had a weak, physisorptive interaction with the substrate as pointed out by the photoelectron spectroscopy data. We discuss these findings in view of our recent reports for HAT adsorbed on Ag(111) and graphene/Ir(111). For all three substrates HAT adopts a similar close-packed hexagonal structure commensurate with the substrate while being physisorbed. The ionization potential is equal for all three substrates, supporting weak molecule-substrate interactions. These findings are remarkable, as commensurate overlayers usually only form at strongly interacting interfaces. We discuss potential reasons for this particular behavior of HAT which clearly sets itself apart from most studied molecule-substrate systems. In particular, these are the relatively weak but flexible intermolecular interactions, the molecular symmetry matching that of the substrate, and the comparatively weak but directional molecule-substrate interactions.

18.
J Am Chem Soc ; 135(41): 15270-3, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24090281

RESUMO

Chiral recognition as well as chirality transfer in supramolecular self-assembly and on-surface coordination is studied for the enantiopure 6,13-dicyano[7]helicene building block. It is remarkable that, with this helical molecule, both H-bonded chains and metal-coordinated chains can be formed on the same substrate, thereby allowing for a direct comparison of the chain bonding motifs and their effects on the self-assembly in experiment and theory. Conformational flexure and both adsorbate/adsorbent and intermolecular interactions can be identified as factors influencing the chiral recognition at the binding site. The observed H-bonded chains are chiral, however, the overall appearance of Cu-coordinated chains is no longer chiral. The study was performed via scanning tunneling microscopy, X-ray-photoelectron spectroscopy and density functional theory calculations. We show a significant influence of the molecular flexibility and the type of bonding motif on the chirality transfer in the 1D self-assembly.

19.
Chemistry ; 18(46): 14610-3, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23065935

RESUMO

Repulsive interactions: a staging of supramolecular aggregation from (0D) clusters to (1D) chains and (2D) assemblies as a function of molecular coverage of dipolar porphyrins adsorbed on the Ag(111) surface is described. It displays a complex interplay of both attractive and repulsive molecule-molecule interactions, the emergence of chirality, and the registry of the substrate.


Assuntos
Porfirinas/química , Prata/química , Estrutura Molecular , Espectrofotometria Ultravioleta , Estereoisomerismo
20.
J Phys Chem C Nanomater Interfaces ; 126(23): 9855-9861, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35747511

RESUMO

In this study, we report on the self-assembly of the organic electron donor 2,3,6,7,10,11-hexamethoxytriphenylene (HAT) on graphene grown epitaxially on Ir(111). Using scanning tunneling microscopy and low-energy electron diffraction, we find that a monolayer of HAT assembles in a commensurate close-packed hexagonal network on graphene/Ir(111). X-ray and ultraviolet photoelectron spectroscopy measurements indicate that no charge transfer between the HAT molecules and the graphene/Ir(111) substrate takes place, while the work function decreases slightly. This demonstrates that the HAT/graphene interface is weakly interacting. The fact that the molecules nonetheless form a commensurate network deviates from what is established for adsorption of organic molecules on metallic substrates where commensurate overlayers are mainly observed for strongly interacting systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA