Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Malar J ; 15: 192, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27060058

RESUMO

BACKGROUND: Members of the Anopheles punctulatus group dominate Papua, Indonesia and Papua New Guinea (PNG), with a geographic range that extends south through Vanuatu. An. farauti and An. punctulatus are the presumed major vectors in this region. Although this group of species has been extensively studied in PNG and the southern archipelagoes within their range, their distribution, ecology and vector behaviours have not been well characterized in eastern Indonesia. METHODS: Mosquitoes were collected in five villages in Jayapura province, Papua, Indonesia using human-landing collections, animal-baited tents and backpack aspirators. Mosquitoes were morphologically typed and then molecularly distinguished based on ribosomal ITS2 sequences and tested for Plasmodium falciparum and P. vivax infection using circumsporozoite ELISA and PCR. RESULTS: The presence and vector status of An. farauti 4 in Papua, Indonesia is confirmed here for the first time. The data indicate that this species is entering houses at a rate that increases its potential to come into contact with humans and act as a major malaria vector. An. farauti 4 was also abundant outdoors and biting humans during early evening hours. Other species collected in this area include An. farauti 1, An. hinesorum, An. koliensis, An. punctulatus, and An. tessellatus. Proboscis morphology was highly variable within each species, lending support to the notion that this characteristic is not a reliable indicator to distinguish species within the An. punctulatus group. CONCLUSIONS: The vector composition in Papua, Indonesia is consistent with certain northern areas of PNG, but the behaviours of anophelines sampled in this region, such as early and indoor human biting of An. farauti 4, may enable them to act as major vectors of malaria. Presumed major vectors An. farauti and An. punctulatus were not abundant among these samples. Morphological identification of anophelines in this sample was often inaccurate, highlighting the importance of using molecular analysis in conjunction with morphological investigations to update keys and training tools.


Assuntos
Anopheles/classificação , Anopheles/fisiologia , Comportamento Alimentar , Insetos Vetores , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Animais , Anopheles/anatomia & histologia , Anopheles/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Indonésia , Análise de Sequência de DNA
2.
Parasit Vectors ; 11(1): 440, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064507

RESUMO

BACKGROUND: Mosquito sampling methods target different aspects of mosquito behavior and are subject to trap and location specific biases. The barrier screen sampling method was developed and tested to sample free-flying, blood-fed, and host-seeking mosquitoes. During a pilot study, this method was useful in obtaining an unbiased sample of mosquitoes flying between outdoor larval habitats, and sites where blood meals were obtained. However, a relatively small number of blood-fed Anopheles mosquitoes were collected in Indonesia during the pilot study. The sampling method was extended in South Lampung, Indonesia, to enable the collection of blood-fed mosquitoes. This study aimed to intercept mosquitoes flying between human habitations and larval habitats with a barrier screen and to characterize mosquito composition, flight characteristics (direction, height and time), abdominal status, and parity. RESULTS: Barrier screens intercepted 15 different mosquito species in South Lampung: eight Anopheles spp. and seven Culex spp. Species compositions varied among the villages in South Lampung. About 15% of Anopheles spp. caught were blood-fed, of which 28.2% of those tested had fed on humans. This is the first time human blood-fed anophelines have been collected in Indonesia using barrier screens. Blood meals identified included cow, dog, goat, and human, as well as mixed blood meals. Activity of unfed An. subpictus, the primary vector collected, flying towards human habitations peaked between 20:00-12:00 h, with a slow decline in activity until 18:00 h. Unfed and fed An. sundaicus, had a different activity profile compared to An. subpictus. Other species demonstrated varied peak activity times, with earlier activity occurring as a general trend. For the Anopheles mosquitoes collected, 55.5% were collected below 0.5 m and 83.9% were captured resting < 1 m from the ground. Parity dissections enabled age structure by species, which revealed species-specific traits such as nulliparous An. subpictus being more active early in the night relative to An. sundaicus. CONCLUSIONS: This study demonstrates that barrier screens are an effective mosquito sampling method that can be used to gain insights into local mosquito species composition, flight characteristics (direction, height and time), abdominal status, and parity.


Assuntos
Anopheles/fisiologia , Comportamento Animal/fisiologia , Culex/fisiologia , Abdome , Animais , Sangue , Feminino , Indonésia , Projetos Piloto , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA