Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 146(5): 826-40, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21884940

RESUMO

Protein-tyrosine phosphatases (PTPs), along with protein-tyrosine kinases, play key roles in cellular signaling. All Class I PTPs contain an essential active site cysteinyl residue, which executes a nucleophilic attack on substrate phosphotyrosyl residues. The high reactivity of the catalytic cysteine also predisposes PTPs to oxidation by reactive oxygen species, such as H(2)O(2). Reversible PTP oxidation is emerging as an important cellular regulatory mechanism and might contribute to diseases such as cancer. We exploited these unique features of PTP enzymology to develop proteomic methods, broadly applicable to cell and tissue samples, that enable the comprehensive identification and quantification of expressed classical PTPs (PTPome) and the oxidized subset of the PTPome (oxPTPome). We find that mouse and human cells and tissues, including cancer cells, display distinctive PTPomes and oxPTPomes, revealing additional levels of complexity in the regulation of protein-tyrosine phosphorylation in normal and malignant cells.


Assuntos
Proteínas Tirosina Fosfatases/análise , Proteômica/métodos , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Oxirredução , Ratos
2.
Nucleic Acids Res ; 51(19): 10484-10505, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37697435

RESUMO

Breast cancer linked with BRCA1/2 mutations commonly recur and resist current therapies, including PARP inhibitors. Given the lack of effective targeted therapies for BRCA1-mutant cancers, we sought to identify novel targets to selectively kill these cancers. Here, we report that loss of RNF8 significantly protects Brca1-mutant mice against mammary tumorigenesis. RNF8 deficiency in human BRCA1-mutant breast cancer cells was found to promote R-loop accumulation and replication fork instability, leading to increased DNA damage, senescence, and synthetic lethality. Mechanistically, RNF8 interacts with XRN2, which is crucial for transcription termination and R-loop resolution. We report that RNF8 ubiquitylates XRN2 to facilitate its recruitment to R-loop-prone genomic loci and that RNF8 deficiency in BRCA1-mutant breast cancer cells decreases XRN2 occupancy at R-loop-prone sites, thereby promoting R-loop accumulation, transcription-replication collisions, excessive genomic instability, and cancer cell death. Collectively, our work identifies a synthetic lethal interaction between RNF8 and BRCA1, which is mediated by a pathological accumulation of R-loops.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Neoplasias da Mama/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/metabolismo , Instabilidade Genômica , Recidiva Local de Neoplasia , Estruturas R-Loop , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32891193

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Assuntos
Proteínas de Ligação a DNA/genética , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Mutação , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Sistema Urinário/metabolismo , Anormalidades Urogenitais/genética , Proteínas de Anfíbios/antagonistas & inibidores , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Família , Feminino , Fatores de Transcrição Forkhead/metabolismo , Heterozigoto , Humanos , Lactente , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Camundongos , Camundongos Knockout , Morfolinos/genética , Morfolinos/metabolismo , Linhagem , Ligação Proteica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sistema Urinário/anormalidades , Anormalidades Urogenitais/metabolismo , Anormalidades Urogenitais/patologia , Sequenciamento do Exoma , Xenopus
4.
Haematologica ; 108(9): 2343-2357, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37021547

RESUMO

Outcomes for patients with acute myeloid leukemia (AML) remain poor due to the inability of current therapeutic regimens to fully eradicate disease-initiating leukemia stem cells (LSC). Previous studies have demonstrated that oxidative phosphorylation (OXPHOS) is an essential process that is targetable in LSC. Sirtuin 3 (SIRT3), a mitochondrial deacetylase with a multi-faceted role in metabolic regulation, has been shown to regulate OXPHOS in cancer models; however, it has not yet been studied in the context of LSC. Thus, we sought to identify if SIRT3 is important for LSC function. Using RNAi and a SIRT3 inhibitor (YC8-02), we demonstrate that SIRT3 is a critical target for the survival of primary human LSC but is not essential for normal human hematopoietic stem and progenitor cell function. In order to elucidate the molecular mechanisms by which SIRT3 is essential in LSC we combined transcriptomic, proteomic, and lipidomic approaches, showing that SIRT3 is important for LSC function through the regulation of fatty acid oxidation (FAO) which is required to support OXPHOS and ATP production in human LSC. Further, we discovered two approaches to further sensitize LSC to SIRT3 inhibition. First, we found that LSC tolerate the toxic effects of fatty acid accumulation induced by SIRT3 inhibition by upregulating cholesterol esterification. Disruption of cholesterol homeostasis sensitizes LSC to YC8-02 and potentiates LSC death. Second, SIRT3 inhibition sensitizes LSC to the BCL-2 inhibitor venetoclax. Together, these findings establish SIRT3 as a regulator of lipid metabolism and potential therapeutic target in primitive AML cells.


Assuntos
Leucemia Mieloide Aguda , Sirtuína 3 , Humanos , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Proteômica , Células-Tronco Neoplásicas/metabolismo , Metabolismo dos Lipídeos , Homeostase , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Ácidos Graxos/uso terapêutico , Colesterol
5.
J Lipid Res ; 63(9): 100256, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921881

RESUMO

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses mediates host cell entry and is S-acylated on multiple phylogenetically conserved cysteine residues. Multiple protein acyltransferase enzymes have been reported to post-translationally modify spike proteins; however, strategies to exploit this modification are lacking. Using resin-assisted capture MS, we demonstrate that the spike protein is S-acylated in SARS-CoV-2-infected human and monkey epithelial cells. We further show that increased abundance of the acyltransferase ZDHHC5 associates with increased S-acylation of the spike protein, whereas ZDHHC5 knockout cells had a 40% reduction in the incorporation of an alkynyl-palmitate using click chemistry detection. We also found that the S-acylation of the spike protein is not limited to palmitate, as clickable versions of myristate and stearate were also labelled the protein. Yet, we observed that ZDHHC5 was only modified when incubated with alkyne-palmitate, suggesting it has specificity for this acyl-CoA, and that other ZDHHC enzymes may use additional fatty acids to modify the spike protein. Since multiple ZDHHC isoforms may modify the spike protein, we also examined the ability of the FASN inhibitor TVB-3166 to prevent S-acylation of the spike proteins of SARS-CoV-2 and human CoV-229E. We show that treating cells with TVB-3166 inhibited S-acylation of expressed spike proteins and attenuated the ability of SARS-CoV-2 and human CoV-229E to spread in vitro. Our findings further substantiate the necessity of CoV spike protein S-acylation and demonstrate that de novo fatty acid synthesis is critical for the proper S-acylation of the spike protein.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Acilação , Aciltransferases/metabolismo , Alcinos , Azetidinas , Coenzima A/metabolismo , Cisteína , Ácido Graxo Sintase Tipo I/metabolismo , Humanos , Miristatos , Nitrilas , Palmitatos , Pirazóis , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Estearatos
6.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269585

RESUMO

Deletion of phenylalanine 508 (∆F508) of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel protein is the leading cause of Cystic Fibrosis (CF). Here, we report the analysis of CFTR and ∆F508-CFTR interactomes using BioID (proximity-dependent biotin identification), a technique that can also detect transient associations. We identified 474 high-confidence CFTR proximity-interactors, 57 of which have been previously validated, with the remainder representing novel interaction space. The ∆F508 interactome, comprising 626 proximity-interactors was markedly different from its wild type counterpart, with numerous alterations in protein associations categorized in membrane trafficking and cellular stress functions. Furthermore, analysis of the ∆F508 interactome in cells treated with Orkambi identified several interactions that were altered as a result of this drug therapy. We examined two candidate CFTR proximity interactors, VAPB and NOS1AP, in functional assays designed to assess surface delivery and overall chloride efflux. VAPB depletion impacted both CFTR surface delivery and chloride efflux, whereas NOS1AP depletion only affected the latter. The wild type and ∆F508-CFTR interactomes represent rich datasets that could be further mined to reveal additional candidates for the functional rescue of ∆F508-CFTR.


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Quinolonas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cloretos/metabolismo , Combinação de Medicamentos , Células HEK293 , Humanos , Espectrometria de Massas , Mutação , Proteínas de Transporte Vesicular/metabolismo
7.
J Proteome Res ; 20(5): 2187-2194, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33683136

RESUMO

On the basis of an analysis of (i) SARS-CoV-2 virions, (ii) SARS-CoV-2-infected VeroE6 cell lysates, and (iii) recombinant SARS-CoV-2 proteins expressed in HEK 293 cells, here we present a comprehensive SARS-CoV-2 peptide spectrum compendium, comprising 1682 high confidence peptide consensus spectra derived from 1170 peptides (of various charge states) spanning 23 virus proteins. This high quality reference set can be used, e.g., for the selection of commonly observed virus peptides for use in targeted proteomics or data-independent acquisition (DIA) approaches. Using this rich resource, we also demonstrate that a spectral matching search approach yields improved performance over the use of standard database search engines alone for the identification of virus peptides in complex biological samples.


Assuntos
COVID-19 , Biblioteca de Peptídeos , Células HEK293 , Humanos , Peptídeos , SARS-CoV-2 , Espectrometria de Massas em Tandem
8.
J Proteome Res ; 19(8): 3554-3561, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32628020

RESUMO

Due to their ease of use and high binding affinity, streptavidin-based purification tools have become widely used for isolating biotinylated compounds from complex mixtures. We and others routinely use streptavidin-sepharose matrices to isolate biotinylated polypeptides generated in proximity-dependent biotinylation approaches, such as BioID or APEX. However, we noted sporadic, substantial variation in the quality of BioID experiments performed in the same laboratories over time, using seemingly identical protocols. Identifying the source of this problem, here, we highlight considerable variability in streptavidin contamination derived from different production lots of streptavidin-sepharose beads from the same manufacturer and demonstrate that high levels of streptavidin peptide contamination can have detrimental effects on BioID data. We also describe two simple, rapid approaches to assess the degree of streptavidin "shedding" from individual lots of the sepharose matrix before use to avoid the use of lower quality reagent.


Assuntos
Biotina , Peptídeos , Biotinilação , Sefarose , Estreptavidina
9.
Mol Cell Proteomics ; 17(11): 2242-2255, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30037810

RESUMO

Zika virus (ZIKV) is a membrane enveloped Flavivirus with a positive strand RNA genome, transmitted by Aedes mosquitoes. The geographical range of ZIKV has dramatically expanded in recent decades resulting in increasing numbers of infected individuals, and the spike in ZIKV infections has been linked to significant increases in both Guillain-Barré syndrome and microcephaly. Although a large number of host proteins have been physically and/or functionally linked to other Flaviviruses, very little is known about the virus-host protein interactions established by ZIKV. Here we map host cell protein interaction profiles for each of the ten polypeptides encoded in the ZIKV genome, generating a protein topology network comprising 3033 interactions among 1224 unique human polypeptides. The interactome is enriched in proteins with roles in polypeptide processing and quality control, vesicle trafficking, RNA processing and lipid metabolism. >60% of the network components have been previously implicated in other types of viral infections; the remaining interactors comprise hundreds of new putative ZIKV functional partners. Mining this rich data set, we highlight several examples of how ZIKV may usurp or disrupt the function of host cell organelles, and uncover an important role for peroxisomes in ZIKV infection.


Assuntos
Organelas/virologia , Mapas de Interação de Proteínas , Zika virus/fisiologia , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Modelos Biológicos , Peroxissomos/metabolismo , Proteínas Virais/metabolismo , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
10.
Proteomics ; 19(24): e1900139, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31617661

RESUMO

A number of unique proteases localize to specific sub-compartments of the mitochondria, but the functions of these enzymes are poorly defined. Here, in vivo proximity-dependent biotinylation (BioID) is used to map the interactomes of seven proteases localized to the mitochondrial intermembrane space (IMS). In total, 802 high confidence proximity interactions with 342 unique proteins are identified. While all seven proteases co-localized with the IMS markers OPA1 and CLPB, 230 of the interacting partners are unique to just one or two protease bait proteins, highlighting the ability of BioID to differentiate unique interactomes within the confined space of the IMS. Notably, high-temperature requirement peptidase 2 (HTRA2) interacts with eight of 13 components of the mitochondrial intermembrane space bridging (MIB) complex, a multiprotein assembly essential for the maintenance of mitochondrial cristae structure. Knockdown of HTRA2 disrupts cristae in HEK 293 and OCI-AML2 cells, and leads to increased intracellular levels of the MIB subunit IMMT. Using a cell-free assay it is demonstrated that HTRA2 can degrade recombinant IMMT but not two other core MIB complex subunits, SAMM50 and CHCHD3. The IMS protease interactome thus represents a rich dataset that can be mined to uncover novel IMS protease biology.


Assuntos
Proteases Dependentes de ATP/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/antagonistas & inibidores , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Humanos , Proteínas de Membrana/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mapas de Interação de Proteínas , RNA Interferente Pequeno/genética
11.
Mol Cell Proteomics ; 16(10): 1864-1888, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28794006

RESUMO

Lung cancer is the leading cause of cancer mortality worldwide, with squamous cell carcinoma (SQCC) being the second most common form. SQCCs are thought to originate in bronchial basal cells through an injury response to smoking, which results in this stem cell population committing to hyperplastic squamous rather than mucinous and ciliated fates. Copy number gains in SOX2 in the region of 3q26-28 occur in 94% of SQCCs, and appear to act both early and late in disease progression by stabilizing the initial squamous injury response in stem cells and promoting growth of invasive carcinoma. Thus, anti-SOX2 targeting strategies could help treat early and/or advanced disease. Because SOX2 itself is not readily druggable, we sought to characterize SOX2 binding partners, with the hope of identifying new strategies to indirectly interfere with SOX2 activity. We now report the first use of proximity-dependent biotin labeling (BioID) to characterize the SOX2 interactome in vivo We identified 82 high confidence SOX2-interacting partners. An interaction with the coactivator EP300 was subsequently validated in both basal cells and SQCCs, and we demonstrate that EP300 is necessary for SOX2 activity in basal cells, including for induction of the squamous fate. We also report that EP300 copy number gains are common in SQCCs and that growth of lung cancer cell lines with 3q gains, including SQCC cells, is dependent on EP300. Finally, we show that EP300 inhibitors can be combined with other targeted therapeutics to achieve more effective growth suppression. Our work supports the use of BioID to identify interacting protein partners of nondruggable oncoproteins such as SOX2, as an effective strategy to discover biologically relevant, druggable targets.


Assuntos
Biotina/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteína p300 Associada a E1A/metabolismo , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Aminopiridinas/farmacologia , Animais , Benzimidazóis/farmacologia , Biotina/genética , Brônquios/citologia , Brônquios/patologia , Progressão da Doença , Proteína p300 Associada a E1A/antagonistas & inibidores , Proteína p300 Associada a E1A/genética , Células HEK293 , Humanos , Isoxazóis/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Morfolinas/farmacologia , Cultura Primária de Células , Fatores de Transcrição SOXB1/genética , Células-Tronco , Células Tumorais Cultivadas
12.
Proteomics ; 17(6)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28176486

RESUMO

Reversible protein-tyrosine phosphorylation is catalyzed by the antagonistic actions of protein-tyrosine kinases (PTKs) and phosphatases (PTPs), and represents a major form of cell regulation. Acute myeloid leukemia (AML) is an aggressive hematological malignancy that results from the acquisition of multiple genetic alterations, which in some instances are associated with deregulated protein-phosphotyrosine (pY) mediated signaling networks. However, although individual PTKs and PTPs have been linked to AML and other malignancies, analysis of protein-pY networks as a function of activated PTKs and PTPs has not been done. In this study, MS was used to characterize AML proteomes, and phospho-proteome-subsets including pY proteins, PTKs, and PTPs. AML proteomes resolved into two groups related to high or low degrees of maturation according to French-American-British classification, and reflecting differential expression of cell surface antigens. AML pY proteomes reflect canonical, spatially organized signaling networks, unrelated to maturation, with heterogeneous expression of activated receptor and nonreceptor PTKs. We present the first integrated analysis of the pY-proteome, activated PTKs, and PTPs. Every PTP and most PTKs have both positive and negative associations with the pY-proteome. pY proteins resolve into groups with shared PTK and PTP correlations. These findings highlight the importance of pY turnover and the PTP phosphatome in shaping the pY-proteome in AML.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Fosfotirosina/metabolismo , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Humanos , Leucemia Mieloide Aguda/enzimologia , Fosforilação , Transdução de Sinais
13.
Proteomics ; 15(2-3): 419-33, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25311528

RESUMO

Aberrant expression and activation of FGFR3 is associated with disease states including bone dysplasia and malignancies of bladder, cervix, and bone marrow. MS analysis of protein-phosphotyrosine in multiple myeloma cells revealed a prevalent phosphorylated motif, D/EYYR/K, derived from the kinase domain activation loops of tyrosine kinases including FGFR3 corresponding to a recognition sequence of protein-tyrosine phosphatase PTPN1. Knockdown of PTPN1 or the related enzyme PTPN2 by RNAi resulted in ligand-independent activation of FGFR3. Modulation of FGFR3 activation loop phosphorylation by both PTPN1 and PTPN2 was a function of receptor trafficking and phosphotyrosine phosphatase (PTP) compartmentalization. The FGFR3 activation loop motif DYYKK(650) is altered to DYYKE(650) in the oncogenic variant FGFR3(K650E) , and consequently it is constitutively fully activated and unaffected by activation loop phosphorylation. FGFR3(K650E) was nevertheless remarkably sensitive to negative regulation by PTPN1 and PTPN2. This suggests that in addition to modulating FGFR3 phosphorylation, PTPN1 and PTPN2 constrain the kinase domain by fostering an inactive-state. Loss of this constraint in response to ligand or impaired PTPN1/N2 may initiate FGFR3 activation. These results suggest a model wherein PTP expression levels may define conditions that select for ectopic FGFR3 expression and activation during tumorigenesis.


Assuntos
Mieloma Múltiplo/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Endocitose , Regulação Neoplásica da Expressão Gênica , Glicosilação , Humanos , Dados de Sequência Molecular , Mieloma Múltiplo/genética , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1/análise , Proteína Tirosina Fosfatase não Receptora Tipo 2/análise , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Interferência de RNA , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/análise , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
14.
Cancer Discov ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787341

RESUMO

Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. While venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug-responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e. OXPHOS) status with relatively high levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in LSCs and provide an avenue for clinical management of venetoclax resistance.

15.
bioRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873284

RESUMO

We previously reported that acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL2, creating a therapeutic opportunity to target LSCs using the BCL2 inhibitor drug venetoclax. While venetoclax-based regimens have indeed shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence mechanisms that dictate venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug responsive and non-responsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate a more active metabolic (i.e., OXPHOS) status with relatively high steady-state levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter, MCU. We demonstrate that inhibition of calcium uptake sharply reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in the biology of LSCs and provide a therapeutic avenue for clinical management of venetoclax resistance.

16.
bioRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961297

RESUMO

Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here, we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain of function mutation p.E1099K, resulting in growth suppression, apoptosis, and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 in a covalent and reversible manner to recruit the SCF FBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCF FBXO22 . Overall, we present a highly potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a novel FBXO22-dependent TPD strategy.

17.
Proc Natl Acad Sci U S A ; 106(47): 20127-32, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19901323

RESUMO

Signaling by growth factor receptor tyrosine kinases is manifest through networks of proteins that are substrates and/or bind to the activated receptors. FGF receptor-3 (FGFR3) is a drug target in a subset of human multiple myelomas (MM) and is mutationally activated in some cervical and colon and many bladder cancers and in certain skeletal dysplasias. To define the FGFR3 network in multiple myeloma, mass spectrometry was used to identify and quantify phosphotyrosine (pY) sites modulated by FGFR3 activation and inhibition in myeloma-derived KMS11 cells. Label-free quantification of peptide ion currents indicated the activation of FGFR3 by phosphorylation of tandem tyrosines in the kinase domain activation loop when cellular pY phosphatases were inhibited by pervanadate. Among the 175 proteins that accumulated pY in response to pervanadate was a subset of 52 including FGFR3 that contained a total of 61 pY sites that were sensitive to inhibition by the FGFR3 inhibitor PD173074. The FGFR3 isoform containing the tandem pY motif in its activation loop was targeted by PD173074. Forty of the drug-sensitive pY sites, including two located within the 35-residue cytoplasmic domain of the transmembrane growth factor binding proteoglycan (and multiple myeloma biomarker) Syndecan-1/CD138, were also stimulated in cells treated with the ligand FGF1, providing additional validation of their link to FGFR3. The identification of these overlapping sets of co-modulated tyrosine phosphorylations presents an outline of an FGFR3 network in the MM model and demonstrates the potential for pharmacodynamic monitoring by label-free quantitative phospho-proteomics.


Assuntos
Mieloma Múltiplo/metabolismo , Fosfotirosina/metabolismo , Proteoma/análise , Pirimidinas/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Fator 3 de Crescimento de Fibroblastos/genética , Fator 3 de Crescimento de Fibroblastos/metabolismo , Humanos , Ligantes , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
18.
Autophagy ; 18(4): 829-840, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34432599

RESUMO

Depolarized mitochondria can be degraded via mitophagy, a selective form of autophagy. The RAB GTPase RAB7A was recently shown to play a key role in this process. RAB7A regulates late endocytic trafficking under normal growth conditions but is translocated to the mitochondrial surface following depolarization. However, how RAB7A activity is regulated during mitophagy is not understood. Here, using a proximity-dependent biotinylation approach (miniTurbo), we identified C5orf51 as a specific interactor of GDP-locked RAB7A. C5orf51 also interacts with the RAB7A guanine nucleotide exchange factor (GEF) complex members MON1 and CCZ1. In the absence of C5orf51, localization of RAB7A on depolarized mitochondria is compromised and the protein is degraded by the proteasome. Furthermore, depletion of C5orf51 also inhibited ATG9A recruitment to depolarized mitochondria. Together, these results indicate that C5orf51 is a positive regulator of RAB7A in its shuttling between late endosomes and mitochondria to enable mitophagy.Abbreviations: ATG9A: autophagy related 9A; Baf A1: bafilomycin A1; BioID: proximity-dependent biotin identification; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CCZ1: CCZ1 homolog, vacuolar protein trafficking and biogenesis associated; DQ-BSA: dye quenched-bovine serum albumin; FYCO1: FYVE and coiled-coil domain autophagy adaptor 1; GAP: GTPase activating protein; GEF: guanine nucleotide exchange factor; KO: knockout; LRPPRC: leucine rich pentatricopeptide repeat containing; MG132: carbobenzoxy-Leu-Leu-leucinal; MON1: MON1 homolog, secretory trafficking associated; mtDNA: mitochondrial DNA; PINK1: PTEN induced kinase 1; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; RMC1: regulator of MON1-CCZ1; TBC1D15: TBC1 domain family member 15; TBC1D17: TBC1 domain family member 17; TOMM20: translocase of outer mitochondrial membrane 20; WDR91: WD repeat domain 91; WT: wild type.


Assuntos
Autofagia , Mitofagia , Autofagia/fisiologia , DNA Mitocondrial , Endossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina , Mitofagia/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
Autophagy ; 18(5): 1174-1186, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34524948

RESUMO

ABBREVIATIONS: BioID: proximity-dependent biotin identification; GO: gene ontology; OSBPL: oxysterol binding protein like; VAPA: VAMP associated protein A; VAPB: VAMP associated protein B and C.


Assuntos
Autofagia , Macroautofagia , Humanos
20.
Leukemia ; 36(5): 1283-1295, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35152270

RESUMO

AML cells are arranged in a hierarchy with stem/progenitor cells giving rise to more differentiated bulk cells. Despite the importance of stem/progenitors in the pathogenesis of AML, the determinants of the AML stem/progenitor state are not fully understood. Through a comparison of genes that are significant for growth and viability of AML cells by way of a CRISPR screen, with genes that are differentially expressed in leukemia stem cells (LSC), we identified importin 11 (IPO11) as a novel target in AML. Importin 11 (IPO11) is a member of the importin ß family of proteins that mediate transport of proteins across the nuclear membrane. In AML, knockdown of IPO11 decreased growth, reduced engraftment potential of LSC, and induced differentiation. Mechanistically, we identified the transcription factors BZW1 and BZW2 as novel cargo of IPO11. We further show that BZW1/2 mediate a transcriptional signature that promotes stemness and survival of LSC. Thus, we demonstrate for the first time how specific cytoplasmic-nuclear regulation supports stem-like transcriptional signature in relapsed AML.


Assuntos
Leucemia Mieloide Aguda , beta Carioferinas , Transporte Ativo do Núcleo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA