Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Zoo Wildl Med ; 54(4): 728-737, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38251996

RESUMO

Spirorchiidosis, caused by blood flukes of the genus Spirorchis, is a disease of great concern for the critically endangered European pond turtle (EPT; Emys orbicularis) in Switzerland. The endogenous life cycle of the parasite often leads to systemic inflammatory reactions, thrombosis, and death. Praziquantel (PZQ) is the treatment of choice against adult Spirorchis spp. in green (Chelonia mydas) and in loggerhead (Caretta caretta) sea turtles and is therefore considered for the treatment of EPT. This study aimed to establish a safe, easily applicable PZQ treatment for EPT, based on pharmacokinetics and tolerability. Three application methods were tested in a total of 12 adult EPT. Each turtle received a total of 75 mg/kg PZQ (three doses of 25 mg/kg in 3-h intervals [q3h × 3]) via IM (n = 3 turtles), SC (n = 3 turtles), or PO (n = 6 turtles) administration. Blood was collected 3, 6, 24, and 48 h after the first administration to determine the plasma concentration of PZQ using high-performance liquid chromatography coupled to mass spectrometry. Maximum measured R-PZQ concentrations (Cmax) were reached after 6 h. The mean Cmax of the total PZQ (sum of R- and S-PZQ) in the PO-treated EPT group was 1,929 ng/ml. Significantly higher concentrations were measured after IM and SC injection (mean Cmax of total PZQ = 12,715 ng/ml and 10,114 ng/ml, respectively). Transient side effects were evident after IM administration (local swelling and lameness), whereas no adverse drug effects were observed after PO and SC administration. Based on these results and the ease of administration to EPT, SC injection of PZQ at 25 mg/kg q3h times 3 serves as promising treatment application for the future.


Assuntos
Praziquantel , Tartarugas , Animais , Praziquantel/efeitos adversos , Cromatografia Líquida de Alta Pressão/veterinária , Marcha , Inflamação/veterinária
2.
Parasite Immunol ; 43(8): e12834, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33754355

RESUMO

BACKGROUND: Programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) immune checkpoint blockade are efficacious in certain cancer therapies. OBJECTIVES: The present study aimed to provide a picture about the development of innate and adaptive immune responses upon PD-L1 blockade in treating chronic murine AE. METHODS: Immune treatment started at 6 weeks post-E. multilocularis infection, and was maintained for 8 weeks with twice per week anti-PD-L1 administration (intraperitoneal). The study included an outgroup-control with mice perorally medicated with albendazole 5 d/wk, and another one with both treatments combined. Assessment of treatment efficacy was based on determining parasite weight, innate and adaptive immune cell profiles, histopathology and liver tissue cytokine levels. RESULTS/CONCLUSIONS: Findings showed that the parasite load was significantly reduced in response to PD-L1 blockade, and this blockade (a) contributed to T-cell activity by increasing CD4+ /CD8+ effector T cells, and decreasing Tregs; (b) had the capacity to restore DCs and Kupffer cells/Macrophages; (c) suppressed NKT and NK cells; and thus (d) lead to an improved control of E. multilocularis infection in mice. This study suggests that the PD-L1 pathway plays an important role by regulating adaptive and innate immune cells against E. multilocularis infection, with significant modulation of tissue inflammation.


Assuntos
Antígeno B7-H1 , Equinococose , Animais , Linfócitos T CD8-Positivos , Imunidade , Camundongos , Receptor de Morte Celular Programada 1
3.
Exp Parasitol ; 219: 108013, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33010287

RESUMO

Alveolar echinococcosis (AE) is a deadly parasitic disease that requires lifelong treatment with albendazole. Development of host immunity is pivotal with regard to the clinical outcome of AE, but its influence on conventional albendazole treatment is unknown. Using T-cell deficient athymic nude mice, we demonstrated that functional immunity is required for albendazole to be efficacious against murine AE. These results call for attention given the increasing number of immunocompromised patients with AE.


Assuntos
Albendazol/uso terapêutico , Anticestoides/uso terapêutico , Equinococose Hepática/tratamento farmacológico , Echinococcus multilocularis/efeitos dos fármacos , Albendazol/farmacologia , Animais , Anticestoides/farmacologia , Modelos Animais de Doenças , Equinococose Hepática/imunologia , Hospedeiro Imunocomprometido , Camundongos , Camundongos Nus , Distribuição Aleatória
4.
Parasitology ; 146(7): 956-967, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30975235

RESUMO

The essential oil (EO) of Thymus capitatus, seven fractions (F1-F7) obtained from silica gel chromatography, and several pure EO components were evaluated with respect to in vitro activities against Echinococcus multilocularis metacestodes and germinal layer (GL) cells. Attempts to evaluate physical damage in metacestodes by phosphoglucose isomerase (PGI) assay failed because EO and F1-F7 interfered with the PGI-activity measurements. A metacestode viability assay based on Alamar Blue, as well as transmission electron microscopy, demonstrated that exposure to EO, F2 and F4 impaired metacestode viability. F2 and F4 exhibited higher toxicity against metacestodes than against mammalian cells, whereas EO was as toxic to mammalian cells as to the parasite. However, none of these fractions exhibited notable activity against isolated E. multilocularis GL cells. Analysis by gas chromatography-mass spectrometry showed that carvacrol was the major component of the EO (82.4%), as well as of the fractions F3 (94.4%), F4 (98.1%) and F5 (90.7%). Other major components of EO were ß-caryophyllene, limonene, thymol and eugenol. However, exposure of metacestodes to these components was ineffective. Thus, fractions F2 and F4 of T. capitatus EO contain potent anti-echinococcal compounds, but the activities of these two fractions are most likely based on synergistic effects between several major and minor constituents.


Assuntos
Anti-Helmínticos/farmacologia , Echinococcus multilocularis/citologia , Echinococcus multilocularis/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Thymus (Planta)/química , Animais , Anti-Helmínticos/química , Bioensaio , Carcinoma Hepatocelular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia em Gel , Descoberta de Drogas , Equinococose/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Prepúcio do Pênis/citologia , Prepúcio do Pênis/efeitos dos fármacos , Humanos , Masculino , Óleos Voláteis/química , Óleos de Plantas/química , Ratos
5.
Infect Immun ; 86(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30037796

RESUMO

Alveolar echinococcosis (AE) is a lethal disease caused by infection with the metacestode stage of the helminth Echinococcus multilocularis, which develops into a tumorlike mass in susceptible intermediate hosts. The growth potential of this parasite stage is directly linked to the nature of the surrounding periparasitic immune-mediated processes. In a first step (experiment 1), mice were orally infected with E. multilocularis eggs, to be used for assessing the hepatic expression profiles of 15 selected cytokine and chemokine genes related to acquired immunity from 21 to 120 days postinfection. The early stage of infection in immunocompetent animals was marked by a mixed Th1/Th2 immune response, as characterized by the concomitant presence of gamma interferon (IFN-γ) and interleukin-4 (IL-4) and their related chemokines. At the late stage of AE, the profile extended to a combined tolerogenic mode including Foxp3, IL-10, and transforming growth factor beta (TGF-ß) as key components. In a second step (experiment 2), the effect of T regulatory cell (Treg) deficiency on metacestode growth was assessed in E. multilocularis-infected DEREG (depletion of regulatory T cells) mice upon induction of Treg deficiency with diphtheria toxin (DT). The parasite lesions were significantly smaller in the livers of treated mice than in corresponding control groups. Foxp3+ Tregs appear to be one of the key players in immune-regulatory processes favoring metacestode survival by affecting antigen presentation and suppressing Th1-type immune responses. For these reasons, we suggest that affecting Foxp3+ Tregs could offer an attractive target in the development of an immunotherapy against AE.


Assuntos
Equinococose/imunologia , Equinococose/terapia , Echinococcus multilocularis/imunologia , Imunoterapia , Óvulo/imunologia , Linfócitos T Reguladores/imunologia , Animais , Quimiocinas/genética , Quimiocinas/imunologia , Citocinas/genética , Citocinas/imunologia , Equinococose/parasitologia , Echinococcus multilocularis/genética , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Células Th2/imunologia
6.
Exp Parasitol ; 188: 65-72, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29625098

RESUMO

Infection with the larval stage (metacestode) of the fox tapeworm Echinococcus multilocularis leads to a primary hepatic disease referred to as alveolar echinococcosis (AE). The progressive disease can be lethal if untreated. In cases where complete parasite resection by surgery is not feasible, the current treatment regimens of AE consist of chemotherapy with the parasitostatic benzimidazoles albendazole or mebendazole over decades. Kinase-inhibitors currently administered in various cancer treatments are of increasing interest also as anti-parasitic drugs due to previous promising in vitro results. In order to search for novel drug targets and treatment regimens, nilotinib (AMN107; Tasigna®), an Abl-tyrosine kinase inhibitor and everolimus (RAD001; Afinitor®), a serine/threonine-kinase inhibitor, were tested for their treatment efficacy against metacestode vesicles of E. multilocularis in vitro and in BALB/c mice. In vitro treatment with 200 µM nilotinib caused drug-induced alterations after 12 days, and everolimus exerted parasite damage at concentrations dosing from 40 to 100 µM after 5 and 12 days of in vitro exposure. Nilotinib (100 mg/kg) + erythromycin (to increase nilotinib plasma levels: 10 mg/kg intraperitoneal) or everolimus (5 mg/kg) were formulated in honey and administered daily for three weeks and subsequently twice a week for an additional three weeks in experimentally infected mice. Treatments did not result in any reduction of parasite growth compared to untreated control groups, whereas oral treatment with albendazole (200 mg/kg) was highly effective. Combined application of the kinase-inhibitors with albendazole did not lead to a synergistic or additive treatment efficacy compared to albendazole treatment alone. These results show that neither nilotinib nor everolimus represent valuable alternatives to the current treatment regimens against AE.


Assuntos
Equinococose Hepática/tratamento farmacológico , Echinococcus multilocularis/efeitos dos fármacos , Everolimo/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Anticestoides/farmacologia , Anticestoides/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Everolimo/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia
8.
BMC Biol ; 12: 5, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24468049

RESUMO

BACKGROUND: The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. RESULTS: Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. CONCLUSIONS: Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.


Assuntos
Echinococcus multilocularis/crescimento & desenvolvimento , Echinococcus multilocularis/metabolismo , Insulina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Echinococcus multilocularis/efeitos dos fármacos , Echinococcus multilocularis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Estágios do Ciclo de Vida/efeitos dos fármacos , Dados de Sequência Molecular , Naftalenos/farmacologia , Organofosfonatos/farmacologia , Parasitos/efeitos dos fármacos , Parasitos/genética , Parasitos/crescimento & desenvolvimento , Fosforilação/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptor de Insulina/química , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptor de Insulina/ultraestrutura , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Técnicas do Sistema de Duplo-Híbrido
9.
Int J Parasitol ; 54(5): 233-245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246405

RESUMO

The cestode Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a fatal zoonotic parasitic disease of the northern hemisphere. Red foxes are the main reservoir hosts and, likely, the main drivers of the geographic spread of the disease in Europe. Knowledge of genetic relationships among E. multilocularis isolates at a European scale is key to understanding the dispersal characteristics of E. multilocularis. Hence, the present study aimed to describe the genetic diversity of E. multilocularis isolates obtained from different host species in 19 European countries. Based on the analysis of complete nucleotide sequences of the cob, atp6, nad2, nad1 and cox1 mitochondrial genes (4,968 bp), 43 haplotypes were inferred. Four haplotypes represented 62.56 % of the examined isolates (142/227), and one of these four haplotypes was found in each country investigated, except Svalbard, Norway. While the haplotypes from Svalbard were markedly different from all the others, mainland Europe appeared to be dominated by two main clusters, represented by most western, central and eastern European countries, and the Baltic countries and northeastern Poland, respectively. Moreover, one Asian-like haplotype was identified in Latvia and northeastern Poland. To better elucidate the presence of Asian genetic variants of E. multilocularis in Europe, and to obtain a more comprehensive Europe-wide coverage, further studies, including samples from endemic regions not investigated in the present study, especially some eastern European countries, are needed. Further, the present work proposes historical causes that may have contributed to shaping the current genetic variability of E. multilocularis in Europe.


Assuntos
Equinococose , Echinococcus multilocularis , Animais , Echinococcus multilocularis/genética , Filogenia , Equinococose/epidemiologia , Equinococose/veterinária , Equinococose/parasitologia , Europa (Continente)/epidemiologia , Zoonoses , Raposas/parasitologia , Variação Genética
10.
BMC Microbiol ; 13: 256, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24228819

RESUMO

BACKGROUND: Arginine is a conditionally essential amino acid important in growing individuals and under non-homeostatic conditions/disease. Many pathogens interfere with arginine-utilization in host cells, especially nitric oxide (NO) production, by changing the expression of host enzymes involved in arginine metabolism. Here we used human intestinal epithelial cells (IEC) and three different isolates of the protozoan parasite Giardia intestinalis to investigate the role of arginine and arginine-metabolizing enzymes during intestinal protozoan infections. RESULTS: RNA expression analyses of major arginine-metabolizing enzymes revealed the arginine-utilizing pathways in human IECs (differentiated Caco-2 cells) grown in vitro. Most genes were constant or down-regulated (e.g. arginase 1 and 2) upon interaction with Giardia, whereas inducible NO synthase (iNOS) and ornithine decarboxylase (ODC) were up-regulated within 6 h of infection. Giardia was shown to suppress cytokine-induced iNOS expression, thus the parasite has both iNOS inducing and suppressive activities. Giardial arginine consumption suppresses NO production and the NO-degrading parasite protein flavohemoglobin is up-regulated in response to host NO. In addition, the secreted, arginine-consuming giardial enzyme arginine deiminase (GiADI) actively reduces T-cell proliferation in vitro. Interestingly, the effects on NO production and T cell proliferation could be reversed by addition of external arginine or citrulline. CONCLUSIONS: Giardia affects the host's arginine metabolism on many different levels. Many of the effects can be reversed by addition of arginine or citrulline, which could be a beneficial supplement in oral rehydration therapy.


Assuntos
Arginina/metabolismo , Células Epiteliais/parasitologia , Giardia lamblia/metabolismo , Interações Hospedeiro-Patógeno , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Redes e Vias Metabólicas/genética
11.
Eukaryot Cell ; 11(7): 864-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22611020

RESUMO

In recent years, proteomics has come of age with the development of efficient tools for purification, identification, and characterization of gene products predicted by genome projects. The intestinal protozoan Giardia intestinalis can be transfected, but there is only a limited set of vectors available, and most of them are not user friendly. This work delineates the construction of a suite of cassette-based expression vectors for use in Giardia. Expression is provided by the strong constitutive ornithine carbamoyltransferase (OCT) promoter, and tagging is possible in both N- and C-terminal configurations. Taken together, the vectors are capable of providing protein localization and production of recombinant proteins, followed by efficient purification by a novel affinity tag combination, streptavidin binding peptide-glutathione S-transferase (SBP-GST). The option of removing the tags from purified proteins was provided by the inclusion of a PreScission protease site. The efficiency and feasibility of producing and purifying endogenous recombinant Giardia proteins with the developed vectors was demonstrated by the purification of active recombinant arginine deiminase (ADI) and OCT from stably transfected trophozoites. Moreover, we describe the tagging, purification by StrepTactin affinity chromatography, and compositional analysis by mass spectrometry of the G. intestinalis 26S proteasome by employing the Strep II-FLAG-tandem affinity purification (SF-TAP) tag. This is the first report of efficient production and purification of recombinant proteins in and from Giardia, which will allow the study of specific parasite proteins and protein complexes.


Assuntos
Giardia/enzimologia , Giardíase/parasitologia , Plasmídeos/genética , Complexo de Endopeptidases do Proteassoma/isolamento & purificação , Proteínas de Protozoários/isolamento & purificação , Fatores de Virulência/isolamento & purificação , Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Giardia/química , Giardia/genética , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Dados de Sequência Molecular , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Plasmídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
12.
Microbiol Spectr ; : e0423922, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786637

RESUMO

During the course of the infectious disease alveolar echinococcosis (AE), the larval stage of Echinococcus multilocularis develops in the liver, where an initial Th1/Th17 immune response may allow its elimination in resistant individuals. In patients susceptible to infection and disease, the Th2 response initiates later, inducing tolerance to the parasite. The role of interleukin 33 (IL-33), an alarmin released during necrosis and known to drive a Th2 immune response, has not yet been described during AE. Wild-type (WT) and IL-33-/- C57BL/6J mice were infected by peritoneal inoculation with E. multilocularis metacestodes and euthanized 4 months later, and their immune response were analyzed. Immunofluorescence staining and IL-33 enzyme-linked immunosorbent assay (ELISA) were also performed on liver samples from human patients with AE. Overall, metacestode lesions were smaller in IL-33-/- mice than in WT mice. IL-33 was detected in periparasitic tissues, but not in mouse or human serum. In infected mice, endogenous IL-33 modified peritoneal macrophage polarization and cytokine profiles. Th2 cytokine concentrations were positively correlated with parasite mass in WT mice, but not in IL-33-/- mice. In human AE patients, IL-33 concentrations were higher in parasitic tissues than in distant liver parenchyma. The main sources of IL-33 were CD31+ endothelial cells of the neovasculature, present within lymphoid periparasitic infiltrates together with FOXP3+ Tregs. In the murine model, periparasitic IL-33 correlated with accelerated parasite growth putatively through the polarization of M2-like macrophages and release of immunosuppressive cytokines IL-10 and transforming growth factor ß1 (TGF-ß1). We concluded that IL-33 is a key alarmin in AE that contributes to the tolerogenic effect of systemic Th2 cytokines. IMPORTANCE Infection with the metacestode stage of Echinococcus multilocularis, known as alveolar echinococcosis, is the most severe cestodosis worldwide. However, less than 1% of exposed individuals, in which the immune system is unable to control the parasite, develop the disease. The factors responsible for this interindividual variability are not fully understood. In this in vivo study comparing wild-type and IL-33-/- infected mice, together with data from human clinical samples, we determined that IL-33, an alarmin released following tissue injury and involved in the pathogenesis of cancer and asthma, accelerates the progression of the disease by modulating the periparasitic microenvironment. This suggests that targeting IL-33 could be of interest for the management of patients with AE, and that IL-33 polymorphisms could be responsible for increased susceptibility to AE.

13.
PLoS Negl Trop Dis ; 17(8): e0011343, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37540716

RESUMO

Echinococcus multilocularis and E. granulosus s.l. are the causative agents of alveolar and cystic echinococcosis, respectively. Drug treatment options for these severe and neglected diseases are limited to benzimidazoles, which are not always efficacious, and adverse side effects are reported. Thus, novel and improved treatments are needed. In this study, the previously established platform for E. multilocularis in vitro drug assessment was adapted to E. granulosus s.s. In a first step, in vitro culture protocols for E. granulosus s.s. were established. This resulted in the generation of large amounts of E. granulosus s.s. metacestode vesicles as well as germinal layer (GL) cells. In vitro culture of these cells formed metacestode vesicles displaying structural characteristics of metacestode cysts generated in vivo. Next, drug susceptibilities of E. multilocularis and E. granulosus s.s. protoscoleces, metacestode vesicles and GL cells were comparatively assessed employing established assays including (i) metacestode vesicle damage marker release assay, (ii) metacestode vesicle viability assay, (iii) GL cell viability assay, and (iv) protoscolex motility assay. The standard drugs albendazole, buparvaquone, mefloquine, MMV665807, monepantel, niclosamide and nitazoxanide were included. MMV665807, niclosamide and nitazoxanide were active against the parasite in all four assays against both species. MMV665807 and monepantel were significantly more active against E. multilocularis metacestode vesicles, while albendazole and nitazoxanide were significantly more active against E. multilocularis GL cells. Albendazole displayed activity against E. multilocularis GL cells, but no effects were seen in albendazole-treated E. granulosus s.s. GL cells within five days. Treatment of protoscoleces with albendazole and monepantel had no impact on motility. Similar results were observed for both species with praziquantel and its enantiomers against protoscoleces. In conclusion, in vitro culture techniques and drug screening methods previously established for E. multilocularis were successfully implemented for E. granulosus s.s., allowing comparisons of drug efficacy between the two species. This study provides in vitro culture techniques for the reliable generation of E. granulosus s.s. metacestode vesicles and GL cell cultures and describes the validation of standardized in vitro drug screening methods for E. granulosus s.s.


Assuntos
Echinococcus granulosus , Echinococcus multilocularis , Animais , Albendazol/farmacologia , Albendazol/uso terapêutico , Niclosamida/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos
14.
Front Cell Infect Microbiol ; 13: 1170763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325510

RESUMO

The larval stage of the cestode Echinococcus multilocularis is the causative agent of alveolar echinococcosis. To investigate the biology of these stages and to test novel compounds, metacestode cultures represent a suitable in vitro model system. These metacestodes are vesicles surrounded by an envelope formed by the vesicle tissue (VT), which is formed by the laminated and germinal layer, and filled with vesicle fluid (VF). We analyzed the proteome of VF and VT by liquid chromatography tandem mass spectrometry (LC-MS/MS) and identified a total of 2,954 parasite proteins. The most abundant protein in VT was the expressed conserved protein encoded by EmuJ_000412500, followed by the antigen B subunit AgB8/3a encoded by EmuJ_000381500 and Endophilin B1 (protein p29). In VF, the pattern was different and dominated by AgB subunits. The most abundant protein was the AgB8/3a subunit followed by three other AgB subunits. In total, the AgB subunits detected in VF represented 62.1% of the parasite proteins. In culture media (CM), 63 E. multilocularis proteins were detected, of which AgB subunits made up 93.7% of the detected parasite proteins. All AgB subunits detected in VF (encoded by EmuJ_000381100-700, corresponding to AgB8/2, AgB8/1, AgB8/4, AgB8/3a, AgB8/3b, and AgB8/3c) were also found in CM, except the subunit encoded by EmuJ_000381800 (AgB8/5) that was very rare in VF and not detected in CM. The relative abundance of the AgB subunits in VF and CM followed the same pattern. In VT, only the subunits EmuJ_000381500 (AgB8/3a) and EmuJ_000381200 (AgB8/1) were detected among the 20 most abundant proteins. To see whether this pattern was specific to VF from in vitro cultured metacestodes, we analyzed the proteome of VF from metacestodes grown in a mouse model. Here, the AgB subunits encoded by EmuJ_000381100-700 constituted the most abundant proteins, namely, 81.9% of total protein, with the same order of abundance as in vitro. Immunofluorescence on metacestodes showed that AgB is co-localized to calcareous corpuscles of E. multilocularis. Using targeted proteomics with HA-tagged EmuJ_000381200 (AgB8/1) and EmuJ_000381100 (AgB8/2), we could show that uptake of AgB subunits from CM into VF occurs within hours.


Assuntos
Echinococcus multilocularis , Parasitos , Animais , Camundongos , Proteômica , Proteoma , Cromatografia Líquida , Espectrometria de Massas em Tandem
15.
ACS Med Chem Lett ; 14(11): 1537-1543, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37970586

RESUMO

The anthelmintic drug praziquantel remains a key clinical therapy for treating various diseases caused by parasitic flatworms. The parasite target of praziquantel has remained undefined despite longstanding usage in the clinic, although a candidate ion channel target, named TRPMPZQ, has recently been identified. Intriguingly, certain praziquantel derivatives show different activities against different parasites: for example, some praziquantel analogs are considerably more active against cestodes than against schistosomes. Here we interrogate whether the different activities of praziquantel analogs against different parasites are also reflected by unique structure-activity relationships at the TRPMPZQ channels found in these different organisms. To do this, several praziquantel analogs were synthesized and functionally profiled against schistosome and cestode TRPMPZQ channels. Data demonstrate that structure-activity relationships are closely mirrored between parasites and their TRPMPZQ orthologs, providing further support for TRPMPZQ as the therapeutically relevant target of praziquantel.

16.
Trop Med Infect Dis ; 8(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38133449

RESUMO

The metacestode stage of the fox tapeworm Echinococcus multilocularis causes the severe zoonotic disease alveolar echinococcosis. New treatment options are urgently needed. Disulfiram and dithiocarbamates were previously shown to exhibit activity against the trematode Schistosoma mansoni. As both parasites belong to the platyhelminths, here we investigated whether these compounds were also active against E. multilocularis metacestode vesicles in vitro. We used an in vitro drug-screening cascade for the identification of novel compounds against E. multilocularis metacestode vesicles with disulfiram and 51 dithiocarbamates. Five compounds showed activity against E. multilocularis metacestode vesicles after five days of drug incubation in a damage marker release assay. Structure-activity relationship analyses revealed that a S-2-hydroxy-5-nitro benzyl moiety was necessary for anti-echinococcal activity, as derivatives without this group had no effect on E. multilocularis metacestode vesicles. The five active compounds were further tested for potential cytotoxicity in mammalian cells. For two compounds with low toxicity (Schl-32.315 and Schl-33.652), IC50 values in metacestode vesicles and IC50 values in germinal layer cells were calculated. The compounds were not highly active on isolated GL cells with IC50 values of 27.0 ± 4.2 µM for Schl-32.315 and 24.7 ± 11.5 µM for Schl-33.652, respectively. Against metacestode vesicles, Schl-32.315 was not very active either with an IC50 value of 41.6 ± 3.2 µM, while Schl-33.652 showed a low IC50 of 4.3 ± 1 µM and should be further investigated in the future for its activity against alveolar echinococcosis.

17.
Int J Parasitol Drugs Drug Resist ; 21: 114-124, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36921443

RESUMO

Alveolar echinococcosis (AE) is caused by infection with the fox tapeworm E. multilocularis. The disease affects humans, dogs, captive monkeys, and other mammals, and it is caused by the metacestode stage of the parasite growing invasively in the liver. The current drug treatment is based on non-parasiticidal benzimidazoles. Thus, they are only limitedly curative and can cause severe side effects. Therefore, novel and improved treatment options for AE are needed. Mefloquine (MEF), an antimalarial agent, was previously shown to be effective against E. multilocularis in vitro and in experimentally infected mice. However, MEF is not parasiticidal and needs improvement for successful treatment of patients, and it can induce strong neuropsychiatric side-effects. In this study, the structure-activity relationship and mode of action of MEF was investigated by comparative analysis of 14 MEF derivatives. None of them showed higher activity against E. multilocularis metacestodes compared to MEF, but four compounds caused limited damage. In order to identify molecular targets of MEF and effective derivatives, differential affinity chromatography combined with mass spectrometry was performed with two effective compounds (MEF, MEF-3) and two ineffective compounds (MEF-13, MEF-22). 1'681 proteins were identified that bound specifically to MEF or derivatives. 216 proteins were identified as binding only to MEF and MEF-3. GO term enrichment analysis of these proteins and functional grouping of the 25 most abundant MEF and MEF-3 specific binding proteins revealed the key processes energy metabolism and cellular transport and structure, as well as stress responses and nucleic acid binding to be involved. The previously described ferritin was confirmed as an exclusively MEF-binding protein that could be relevant for its efficacy against E. multilocularis. The here identified potential targets of MEF will be further investigated in the future for a clear understanding of the pleiotropic effects of MEF, and improved therapeutic options against AE.


Assuntos
Equinococose , Echinococcus multilocularis , Parasitos , Humanos , Camundongos , Animais , Cães , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Equinococose/tratamento farmacológico , Equinococose/parasitologia , Antiparasitários/farmacologia , Mamíferos
18.
Parasitol Int ; 86: 102449, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34481946

RESUMO

Trichinellosis is a potentially deadly parasitic zoonosis that is contracted by consuming undercooked infected meat. Reliable detection of infectious Trichinella spp. larvae in meat is therefore pivotal to ensure consumer's safety. The recently authorised PrioCHECK™ Trichinella Alternative Artificial Digestion (AAD) test kit appears promising when used with the standard magnetic stirrer method, but evaluation with other apparatus types is lacking. In this study, the performance of the AAD kit in an adapted Trichomatic-35 (TM35) instrument was evaluated, first, at the Swiss National Reference Laboratory for trichinellosis (NRL); second, in a ring trial involving four Swiss official laboratories. Proficiency pork samples spiked with larvae of Trichinella spiralis, T. britovi, or T. pseudospiralis were tested with the AAD kit and with the reference pepsin-HCl digestion method in TM35 instruments. At the NRL, both methods yielded identical qualitative and similar quantitative results independently of the Trichinella species. In the ring trial, satisfactory results were obtained for 47/50 (94.0%) (AAD) and 62/67 (92.5%) (reference method) of the analysed samples. Technical problems impairing analysis were more frequently observed with the AAD kit (n = 22) than with the reference method (n = 5) and were mainly (16/22) reported by one of the external labs. When no technical issues were recorded, the performance of both methods was comparable, in agreement with the observations at the NRL; however, these results suggest a need for further training with the kit and standardisation of the adapted TM35 instruments.


Assuntos
Testes Diagnósticos de Rotina/instrumentação , Parasitologia de Alimentos , Carne de Porco/parasitologia , Trichinella/isolamento & purificação , Animais , Larva/crescimento & desenvolvimento , Sensibilidade e Especificidade , Trichinella/crescimento & desenvolvimento , Trichinella spiralis/crescimento & desenvolvimento , Trichinella spiralis/isolamento & purificação
19.
EXCLI J ; 21: 793-813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35949491

RESUMO

The immunomodulatory potential of Trichinella spiralis muscle larvae excretory-secretory products (ES L1) has been well documented in vitro on dendritic cells (DCs) and in animal models of autoimmune diseases. ES L1 products possess the potential to induce tolerogenic DCs and consequently trigger regulatory mechanisms that maintain immune homeostasis. The use of ES L1 as a potential treatment for various inflammatory disorders proved to be beneficial in animal models, although the precise immunomodulatory factors have not yet been identified. This study aimed at the isolation and characterization of ES L1 components that possess galectin family member properties. Galectin-1-like proteins (TsGal-1-like) were isolated from ES L1 based on the assumption of the existence of a lactose-specific carbohydrate-recognition domain and were recognized by anti-galectin-1 antibodies in Western blot. This TsGal-1-like isolate, similar to galectin-1, induced DCs with tolerogenic properties and hence, the capacity to polarize T cell response towards a regulatory type. This was reflected by a significantly increased percentage of CD4+CD25+Foxp3+ regulatory T cells and significantly increased expression of IL-10 and TGF-ß within this cell population. Proteomic analysis of TsGal-1-like isolate by mass spectrometry identified nineteen proteins, seven with annotated function after blast analysis against a database for T. spiralis and the UniProt database. To our surprise, none of the identified proteins possesses homology with known galectin family members. Nevertheless, the isolated components of ES L1 possess certain galectin-1 properties, such as specific lactose binding and the potential to elicit a regulatory immune response, so it would be worth further investigating the structure of sugar binding within isolated proteins and its biological significance.

20.
PLoS Negl Trop Dis ; 16(1): e0009192, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030165

RESUMO

BACKGROUND: Echinococcus multilocularis causes alveolar echinococcosis (AE), a rising zoonotic disease in the northern hemisphere. Treatment of this fatal disease is limited to chemotherapy using benzimidazoles and surgical intervention, with frequent disease recurrence in cases without radical surgery. Elucidating the molecular mechanisms underlying E. multilocularis infections and host-parasite interactions ultimately aids developing novel therapeutic options. This study explored an involvement of unfolded protein response (UPR) and endoplasmic reticulum-stress (ERS) during E. multilocularis infection in mice. METHODS: E. multilocularis- and mock-infected C57BL/6 mice were subdivided into vehicle, albendazole (ABZ) and anti-programmed death ligand 1 (αPD-L1) treated groups. To mimic a chronic infection, treatments of mice started six weeks post i.p. infection and continued for another eight weeks. Liver tissue was then collected to examine inflammatory cytokines and the expression of UPR- and ERS-related genes. RESULTS: E. multilocularis infection led to an upregulation of UPR- and ERS-related proteins in the liver, including ATF6, CHOP, GRP78, ERp72, H6PD and calreticulin, whilst PERK and its target eIF2α were not affected, and IRE1α and ATF4 were downregulated. ABZ treatment in E. multilocularis infected mice reversed, or at least tended to reverse, these protein expression changes to levels seen in mock-infected mice. Furthermore, ABZ treatment reversed the elevated levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ in the liver of infected mice. Similar to ABZ, αPD-L1 immune-treatment tended to reverse the increased CHOP and decreased ATF4 and IRE1α expression levels. CONCLUSIONS AND SIGNIFICANCE: AE caused chronic inflammation, UPR activation and ERS in mice. The E. multilocularis-induced inflammation and consecutive ERS was ameliorated by ABZ and αPD-L1 treatment, indicating their effectiveness to inhibit parasite proliferation and downregulate its activity status. Neither ABZ nor αPD-L1 themselves affected UPR in control mice. Further research is needed to elucidate the link between inflammation, UPR and ERS, and if these pathways offer potential for improved therapies of patients with AE.


Assuntos
Albendazol/uso terapêutico , Equinococose Hepática/tratamento farmacológico , Echinococcus multilocularis , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Animais , Anticestoides/uso terapêutico , Doença Crônica/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA