Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Hyperthermia ; 40(1): 2223371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37357335

RESUMO

OBJECTIVE: Magnetic nanowires (MNWs) are potential candidates for heating in biomedical applications that require rapid and uniform heating rates, such as warming cryopreserved organs and hyperthermia treatment of cancer cells. Therefore, it is essential to determine which materials and geometries will provide the optimal heating using available alternating magnetic fields (AMF). METHOD: Micromagnetic simulations are used to investigate the heating ability of MNWs by predicting their hysteretic behavior. MNWs composed of iron (Fe), nickel (Ni), cobalt (Co) or permalloy (FeNi alloy, Py) with different diameters (10-200 nm) are simulated using object oriented micromagnetic framework (OOMMF). RESULTS: Hysteresis loops are obtained for each simulated MNW, and the 2D/3D magnetic moment map is simulated to show the reversal mechanism. The heating ability, in terms of specific loss power (SLP), is calculated from the area of the hysteresis loop times frequency for each MNW for comparison with others. CONCLUSION: It is estimated that a theoretical optimal heating ability of 2730 W/g can be provided by isolated Co MNWs with 50 nm diameters using a typical AMF system that can supply 72 kA/m field amplitude and 50 kHz in frequency. Generalized correlation between coercivity and size/material of MNWs is provided as a guidance for researchers to choose the most appropriate MNW as a heater for their AMF system and vice versa.


Assuntos
Hipertermia Induzida , Nanofios , Calefação , Magnetismo , Campos Magnéticos
2.
IEEE Trans Magn ; 58(8)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36864851

RESUMO

Magnetic nanowires (MNWs) can have their moments reversed via several mechanisms that are controlled using the composition, length, diameter, and density of nanowires in arrays as-synthesized or as individual nanoparticles in assays or gels. This tailoring of magnetic reversal leads to unique properties that can be used as a signature for reading out the type of MNW for applications as nano-barcodes. When synthesized inside track-etched polycarbonate membranes, the resulting MNW-embedded membranes can be used as biocompatible bandaids for detection without contact or optical sighting. When etched out of the growth template, free-floating MNWs are internalized by cells at 37 °C such that cells and/or exosomes can be collected and detected. In applications of cryopreservation, MNWs can be suspended in cryopreservation agents (CPAs) for injection into the blood vessels of tissues and organs as they are vitrified to -200 °C. Using an alternating magnetic field, the MNWs can then be nanowarmed rapidly to prevent crystallization and uniformly to prevent cracking of specimens, for example, as grafts or transplants. This invited paper is a review of recent progress in the specific bioapplications of MNWs to barcodes, biocomposites, and nanowarmers.

3.
Sensors (Basel) ; 21(13)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34283095

RESUMO

Multifunctional magnetic nanowires (MNWs) have been studied intensively over the last decades, in diverse applications. Numerous MNW-based systems have been introduced, initially for fundamental studies and later for sensing applications such as biolabeling and nanobarcoding. Remote sensing of MNWs for authentication and/or anti-counterfeiting is not only limited to engineering their properties, but also requires reliable sensing and decoding platforms. We review the latest progress in designing MNWs that have been, and are being, introduced as nanobarcodes, along with the pros and cons of the proposed sensing and decoding methods. Based on our review, we determine fundamental challenges and suggest future directions for research that will unleash the full potential of MNWs for nanobarcoding applications.


Assuntos
Nanofios , Fenômenos Magnéticos
4.
Sensors (Basel) ; 20(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365832

RESUMO

The remarkable multimodal functionalities of magnetic nanoparticles, conferred by their size and morphology, are very important in resolving challenges slowing the progression of nanobiotechnology. The rapid and revolutionary expansion of magnetic nanoparticles in nanobiotechnology, especially in nanomedicine and therapeutics, demands an overview of the current state of the art for synthesizing and characterizing magnetic nanoparticles. In this review, we explain the synthesis routes for tailoring the size, morphology, composition, and magnetic properties of the magnetic nanoparticles. The pros and cons of the most popularly used characterization techniques for determining the aforementioned parameters, with particular focus on nanomedicine and biosensing applications, are discussed. Moreover, we provide numerous biomedical applications and highlight their challenges and requirements that must be met using the magnetic nanoparticles to achieve the most effective outcomes. Finally, we conclude this review by providing an insight towards resolving the persisting challenges and the future directions. This review should be an excellent source of information for beginners in this field who are looking for a groundbreaking start but they have been overwhelmed by the volume of literature.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Magnetismo , Nanomedicina , Fenômenos Físicos
5.
Sensors (Basel) ; 18(8)2018 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-30103550

RESUMO

Galfenol (Fe1-xGax, 10 < x < 40) may be the only smart material that can be made by electrochemical deposition which enables thick film and nanowire structures. This article reviews the deposition, characterization, and applications of Galfenol thin films and nanowires. Galfenol films have been made by sputter deposition as well as by electrochemical deposition, which can be difficult due to the insolubility of gallium. However, a stable process has been developed, using citrate complexing, a rotating disk electrode, Cu seed layers, and pulsed deposition. Galfenol thin films and nanowires have been characterized for crystal structures and magnetostriction both by our group and by collaborators. Films and nanowires have been shown to be largely polycrystalline, with magnetostrictions that are on the same order of magnitude as textured bulk Galfenol. Electrodeposited Galfenol films were made with epitaxial texture on GaAs. Galfenol nanowires have been made by electrodeposition into anodic aluminum oxide templates using similar parameters defined for films. Segmented nanowires of Galfenol/Cu have been made to provide engineered magnetic properties. Applications of Galfenol and other magnetic nanowires include microfluidic sensors, magnetic separation, cellular radio-frequency identification (RFID) tags, magnetic resonance imaging (MRI) contrast, and hyperthermia.

6.
Nanotechnology ; 26(13): 135102, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25764570

RESUMO

We present non-cytotoxic, magnetic, Arg-Gly-Asp (RGD)-functionalized nickel nanowires (RGD-nanowires) that trigger specific cellular responses via integrin transmembrane receptors, resulting in dispersal of the nanowires. Time-lapse fluorescence and phase contrast microscopy showed that dispersal of 3 µm long nanowire increased by a factor of 1.54 with functionalization by RGD, compared to polyethylene glycol (PEG), through integrin-specific binding, internalization and proliferation in osteosarcoma cells. Further, a 35.5% increase in cell density was observed in the presence of RGD-nanowires, compared to an increase of only 15.6% with PEG-nanowires. These results promise to advance applications of magnetic nanoparticles in drug delivery, hyperthermia, and cell separation where uniformity and high efficiency in cell targeting is desirable.


Assuntos
Integrinas/metabolismo , Nanofios/química , Níquel/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cães , Sistemas de Liberação de Medicamentos/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanofios/toxicidade , Níquel/toxicidade , Oligopeptídeos/química , Osteossarcoma/metabolismo , Polietilenoglicóis/química
7.
Nano Lett ; 12(8): 4102-9, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22783942

RESUMO

Resistivities of 5.4 µΩ·cm were measured in 10-nm-diameter metallic wires. Low resistance is important for interconnections of the future to prevent heating, electromigration, high power consumption, and long RC time constants. To demonstrate application of these wires, Co/Cu/Co magnetic sensors were synthesized with 20-30 Ω and 19% magnetoresistance. Compared to conventional lithographically produced magnetic tunnel junction sensors, these structures offer facile fabrication and over 2 orders of magnitude lower resistances due to smooth sidewalls from in situ templated chemical growth.

8.
Nanoscale Adv ; 3(2): 584-592, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36131738

RESUMO

Magnetic nanowires (MNWs) rank among the most promising multifunctional magnetic nanomaterials for nanobarcoding applications owing to their safety, nontoxicity, and remote decoding using a single magnetic excitation source. Until recently, coercivity and saturation magnetization have been proposed as encoding parameters. Herein, backward remanence magnetization (BRM) is used to decode unknown remanence spectra of MNWs-based nanobarcodes. A simple and fast expectation algorithm is proposed to decode the unknown remanence spectra with a success rate of 86% even though the MNWs have similar coercivities, which cannot be accomplished by other decoding schemes. Our experimental approach and analytical analysis open a promising direction towards reliably decoding magnetic nanobarcodes to expand their capabilities for security and labeling applications.

9.
Sci Rep ; 11(1): 7656, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828131

RESUMO

Surface plasmons have found a wide range of applications in plasmonic and nanophotonic devices. The combination of plasmonics with three-dimensional photonic crystals has enormous potential for the efficient localization of light in high surface area photoelectrodes. However, the metals traditionally used for plasmonics are difficult to form into three-dimensional periodic structures and have limited optical penetration depth at operational frequencies, which limits their use in nanofabricated photonic crystal devices. The recent decade has seen an expansion of the plasmonic material portfolio into conducting ceramics, driven by their potential for improved stability, and their conformal growth via atomic layer deposition has been established. In this work, we have created three-dimensional photonic crystals with an ultrathin plasmonic titanium nitride coating that preserves photonic activity. Plasmonic titanium nitride enhances optical fields within the photonic electrode while maintaining sufficient light penetration. Additionally, we show that post-growth annealing can tune the plasmonic resonance of titanium nitride to overlap with the photonic resonance, potentially enabling coupled-phenomena applications for these three-dimensional nanophotonic systems. Through characterization of the tuning knobs of bead size, deposition temperature and cycle count, and annealing conditions, we can create an electrically- and plasmonically-active photonic crystal as-desired for a particular application of choice.

10.
RSC Adv ; 10(22): 13286-13292, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35492114

RESUMO

The unmet demand for cheap, accurate, and fast multiplexing of biomarkers has urged nanobiotechnology to prioritize the invention of new biomarkers that make feasible the remote detection, identification, and quantification of biological units, such as regenerative tissues. Here, we introduce a novel approach that highlights magnetic nanowires (MNWs) with such capabilities. This method employs the stable magnetization states of MNWs as a unique characteristic that can be realized by projecting the MNWs' switching field on the backward field (P Hb), also known as the irreversible switching field. Experimentally, several types of MNWs were directly synthesized inside polycarbonate tissues and their P Hb characteristics were measured and analyzed. Our results show that the P Hb gives an excellent identification and quantification characteristic for demultiplexing MNWs embedded in these tissues. Furthermore, this method significantly improves the characterization speed by a factor of 50×-100× that makes it superior to the current state of the art that ceased the progression of magnetic nanoparticles in multiplexing/demultiplexing applications.

11.
Sci Rep ; 10(1): 15482, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968111

RESUMO

Magnetic nanoparticles have been proposed as contact-free minimal-background nanobarcodes, and yet it has been difficult to rapidly and reliably decode them in an assembly. Here, high aspect ratio nanoparticles, or magnetic nanowires (MNWs), are characterized using first-order reversal curves (FORC) to investigate quantitative decoding. We have synthesized four types of nanowires (differing in diameter) that might be used for barcoding, and identified four possible "signature" functions that might be used to quickly distinguish them. To test this, we have measured the signatures of several combination samples containing two or four different MNW types, and fit them to linear combinations of the individual type signatures to determine the volume ratios of the types. We find that the signature which determines the ratios most accurately involves only the slope of each FORC at its reversal field, which requires only 2-4 data points per FORC curve, reducing the measurement time by a factor of 10 to 50 compared to measuring the full FORC.

12.
Nanomaterials (Basel) ; 10(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854239

RESUMO

Isolating and analyzing tumor-derived exosomes (TEX) can provide important information about the state of a tumor, facilitating early diagnosis and prognosis. Since current isolation methods are mostly laborious and expensive, we propose herein a fast and cost-effective method based on a magnetic nanoplatform to isolate TEX. In this work, we have tested our method using three magnetic nanostructures: (i) Ni magnetic nanowires (MNWs) (1500 × 40 nm), (ii) Fe3O4 nanorods (NRs) (41 × 7 nm), and (iii) Fe3O4 cube-octahedral magnetosomes (MGs) (45 nm) obtained from magnetotactic bacteria. The magnetic response of these nanostructures has been characterized, and we have followed their internalization inside canine osteosarcoma OSCA-8 cells. An overall depiction has been obtained using a combination of Fluorescence and Scanning Electron Microscopies. In addition, Transmission Electron Microscopy images have shown that the nanostructures, with different signs of degradation, ended up being incorporated in endosomal compartments inside the cells. Small intra-endosomal vesicles that could be precursors for TEX have also been identified. Finally, TEX have been isolated using our magnetic isolation method and analyzed with a Nanoparticle tracking analyzer (NanoSight). We observed that the amount and purity of TEX isolated magnetically with MNWs was higher than with NRs and MGs, and they were close to the results obtained using conventional non-magnetic isolation methods.

13.
Materials (Basel) ; 12(16)2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412653

RESUMO

Nickel magnetic nanowires (NWs) have attracted significant attention due to their unique properties, which are useful for basic studies and technological applications, for example in biomedicine. Their structure and magnetic properties were systematically studied in the recent years. In this work, Ni NWs with high aspect ratios (length/diameter ~250) were fabricated by electrodeposition into commercial anodic aluminum oxide templates. The templates were then etched and the NWs were suspended in water, where their hydrodynamic size was evaluated by dynamic light scattering. The magnetic response of these NWs as a function of an external magnetic field indicates a dominant shape anisotropy with propagation of the vortex domain wall as the main magnetization reversal process. The suspension of Ni NWs was used in the synthesis of two types of polyacrylamide ferrogels (FGs) by free radical polymerization, with weight fractions of Ni NWs in FGs of 0.036% and 0.169%. The FGs were reasonably homogeneous. The magnetic response of these FGs (hysteresis loops) indicated that the NWs are randomly oriented inside the FG, and their magnetic response remains stable after embedding.

14.
Nanoscale ; 11(31): 14607-14615, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31287480

RESUMO

Ferromagnetic Co35Fe65, Fe, Co, and Ni nanowires have high saturation magnetizations (Ms) and magnetic anisotropies, making them ideal for magnetic heating in an alternating magnetic field (AMF). Here, Au-tipped nanowires were coated with polyethylene glycol (PEG) and specific absorption rates (SAR) were measured in glycerol. SAR increased when using metals with increasing Ms (Co35Fe65 > Fe > Co > Ni), reaching 1610 ± 20 W g-1 metal at 1 mg metal per ml glycerol for Co35Fe65 nanowires using 190 kHz and 20 kA m-1. Aligning these nanowires parallel to the AMF increased SAR up to 2010 W g-1 Co35Fe65. Next, Co35Fe65 nanowires were used to nanowarm vitrified VS55, a common cryoprotective agent (CPA).Nanowarming rates up to 1000 °C min-1 (5 mg Co35Fe65 per ml VS55) were achieved, which is 20× faster than the critical warming rate (50 °C min-1) for VS55 and other common CPAs. Human dermal fibroblast cells exposed to VS55, and Co35Fe65 nanowire concentrations of 0, 1 and 2.5 mg Fe per ml all showed similar cell viability, indicating that the nanowires had minimal cytotoxicity. With the ability to provide rapid and uniform heating, ferromagnetic nanowires have excellent potential for nanowarming cryopreserved tissues.


Assuntos
Imãs , Nanofios/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cobalto/química , Crioprotetores/química , Ouro/química , Humanos , Ferro/química , Nanopartículas de Magnetita/química , Microscopia de Força Atômica , Nanofios/toxicidade , Polietilenoglicóis/química
15.
Sci Rep ; 8(1): 15696, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356071

RESUMO

Epitope-specific CD4+ T lymphocytes were magnetically enriched using ferromagnetic Ni and Fe-Au nanowires coated with a monomer containing a major histocompatibility complex class II-bound peptide epitope (pMHCII). The enriched lymphocytes were subsequently quantified using fluorescence-activated cell sorting (FACS). This was the first use of magnetic nanowires for cell sorting using FACS, and improvements in both specificity and fluorescent signal strength were predicted due to higher particle moments and lengths than conventional paramagnetic beads. Three different types of nanowires (Ni, Fe with Au tip and Fe-Au multilayers) were made by electrodeposition. Ni nanowires separated fewer T cells than Au tipped Fe nanowires, likely because Ni has a lower magnetic moment than Fe. Fe-Au multilayer nanowires separated more T cells than Au-tipped Fe nanowires because there was more monomer per nanowire. Also, increasing the amount of monomer increased the number of CD4+ cells separated. Compared to conventional paramagnetic beads, the nanowires had lower specificity for CD4+ T cells, but had stronger fluorescent signals due to more fluorophores per particle. This results in broader FACS baseline separation between the positive and negative cells, which is useful to detect T cells, even those with lower binding affinity for pMHCII ligands.


Assuntos
Linfócitos T CD4-Positivos/química , Epitopos de Linfócito T/química , Citometria de Fluxo/métodos , Ouro/química , Ferro/química , Imãs/química , Nanofios/química , Níquel/química , Animais , Galvanoplastia/métodos , Antígenos de Histocompatibilidade Classe II/imunologia , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Sensibilidade e Especificidade , Baço/citologia
16.
Sci Rep ; 7(1): 5820, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28725052

RESUMO

The first experimental TE-mode silicon-on-insulator (SOI) isolators using Faraday Rotation are here realized to fill the 'missing link' in source-integrated near infrared photonic circuits. The isolators are simple 1D 2-element waveguides, where garnet claddings and longitudinal magnetic fields produce nonreciprocal mode conversion, the waveguide equivalent of Faraday Rotation (FR). Quasi-phase matched claddings are used to overcome the limitations of birefringence. Current experimental SOI isolators use nonreciprocal phase shift (NRPS) in interferometers or ring resonators, but to date NRPS requires TM-modes, so the TE-modes normally produced by integrated lasers cannot be isolated without many ancillary polarisation controls. The presented FR isolators are made via lithography and sputter deposition, which allows facile upscaling compared to the pulsed laser deposition or wafer bonding used in the fabrication of NRPS devices. Here, isolation ratios and losses of 11 dB and 4 dB were obtained, and future designs are identified capable of isolation ratios >30 dB with losses <6 dB.

17.
ACS Nano ; 11(8): 8311-8319, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28700823

RESUMO

A comprehensive three-dimensional picture of magnetic ordering in high-density arrays of segmented FeGa/Cu nanowires is experimentally realized through the application of polarized small-angle neutron scattering. The competing energetics of dipolar interactions, shape anisotropy, and Zeeman energy in concert stabilize a highly tunable spin structure that depends heavily on the applied field and sample geometry. Consequently, we observe ferromagnetic and antiferromagnetic interactions both among wires and between segments within individual wires. The resulting magnetic structure for our nanowire sample in a low field is a fan with magnetization perpendicular to the wire axis that aligns nearly antiparallel from one segment to the next along the wire axis. Additionally, while the low-field interwire coupling is ferromagnetic, application of a field tips the moments toward the nanowire axis, resulting in highly frustrated antiferromagnetic stripe patterns in the hexagonal nanowire lattice. Theoretical calculations confirm these observations, providing insight into the competing interactions and resulting stability windows for a variety of ordered magnetic structures. These results provide a roadmap for designing high-density magnetic nanowire arrays for spintronic device applications.

18.
Biomaterials ; 139: 67-74, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28586720

RESUMO

Remote microactuators are of great interest in biology and medicine as minimally-invasive tools for cellular stimulation. Remote actuation can be achieved by active magnetostrictive transducers which are capable of changing shape in response to external magnetic fields thereby creating controlled displacements. Among the magnetostrictive materials, Galfenol, the multifaceted iron-based smart material, offers high magnetostriction with robust mechanical properties. In order to explore these capabilities for biomedical applications, it is necessary to study the feasibility of material miniaturization in standard fabrication processes as well as evaluate the biocompatibility. Here we develop a technology to fabricate, release, and suspend Galfenol-based microparticles, without affecting the integrity of the material. The morphology, composition and magnetic properties of the material itself are characterized. The direct cytotoxicity of Galfenol is evaluated in vitro using human macrophages, osteoblast and osteosarcoma cells. In addition, cytotoxicity and actuation of Galfenol microparticles in suspension are evaluated using human macrophages. The biological parameters analyzed indicate that Galfenol is not cytotoxic, even after internalization of some of the particles by macrophages. The microparticles were remotely actuated forming intra- and extracellular chains that did not impact the integrity of the cells. The results propose Galfenol as a suitable material to develop remote microactuators for cell biology studies and intracellular applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Gálio/farmacologia , Ferro/farmacologia , Células THP-1/efeitos dos fármacos , Materiais Biocompatíveis/química , Engenharia Biomédica , Adesão Celular , Sobrevivência Celular/efeitos dos fármacos , Gálio/química , Humanos , Ferro/química , Miniaturização , Cultura Primária de Células , Silício/química , Fatores de Tempo
19.
Chem Commun (Camb) ; 52(85): 12634-12637, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27711340

RESUMO

Electrodeposited Fe and Fe-Au nanowires were studied for potential as MRI contrast agents, especially for T2-weighted imaging. Transverse relaxivities up to r2 = 77.1 mM Fe-1 s-1 (at 1.5 T) were achieved when Fe-Au nanowires were coated with thiol and carboxylic acid functionalized poly(ethyleneglycol). T2-Weighted images (9 T) verified successful contrast.


Assuntos
Meios de Contraste , Galvanoplastia/métodos , Ouro/química , Ferro/química , Imageamento por Ressonância Magnética/métodos , Nanofios/química , Humanos
20.
J Appl Phys ; 118(2): 024302, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26221057

RESUMO

Using off-axis electron holography under Lorentz microscopy conditions to experimentally determine the magnetization distribution in individual cobalt (Co) nanowires, and scanning precession-electron diffraction to obtain their crystalline orientation phase map, allowed us to directly visualize with high accuracy the effect of crystallographic texture on the magnetization of nanowires. The influence of grain boundaries and disorientations on the magnetic structure is correlated on the basis of micromagnetic analysis in order to establish the detailed relationship between magnetic and crystalline structure. This approach demonstrates the applicability of the method employed and provides further understanding on the effect of crystalline structure on magnetic properties at the nanometric scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA