Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 29(4): 521-531, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30846532

RESUMO

Humans are frequently exposed to acrylamide, a probable human carcinogen found in commonplace sources such as most heated starchy foods or tobacco smoke. Prior evidence has shown that acrylamide causes cancer in rodents, yet epidemiological studies conducted to date are limited and, thus far, have yielded inconclusive data on association of human cancers with acrylamide exposure. In this study, we experimentally identify a novel and unique mutational signature imprinted by acrylamide through the effects of its reactive metabolite glycidamide. We next show that the glycidamide mutational signature is found in a full one-third of approximately 1600 tumor genomes corresponding to 19 human tumor types from 14 organs. The highest enrichment of the glycidamide signature was observed in the cancers of the lung (88% of the interrogated tumors), liver (73%), kidney (>70%), bile duct (57%), cervix (50%), and, to a lesser extent, additional cancer types. Overall, our study reveals an unexpectedly extensive contribution of acrylamide-associated mutagenesis to human cancers.


Assuntos
Acrilamidas/toxicidade , Carcinogênese/genética , Exposição Ambiental , Mutagênicos/toxicidade , Mutação , Neoplasias/genética , Animais , Carcinogênese/induzido quimicamente , Células Cultivadas , Compostos de Epóxi/toxicidade , Genoma Humano , Humanos , Camundongos , Neoplasias/induzido quimicamente , Proteína Supressora de Tumor p53/genética
2.
Clin Proteomics ; 15: 21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946230

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are one of the most important components of tumor stroma and play a key role in modulating tumor growth. However, a mechanistic understanding of how CAFs communicate with tumor cells to promote their proliferation and invasion is far from complete. A major reason for this is that most current techniques and model systems do not capture the complexity of signal transduction that occurs between CAFs and tumor cells. METHODS: In this study, we employed a stable isotope labeling with amino acids in cell culture (SILAC) strategy to label invasive breast cancer cells, MDA-MB-231, and breast cancer patient-derived CAF this has already been defined above cells. We used an antibody-based phosphotyrosine peptide enrichment method coupled to LC-MS/MS to catalog and quantify tyrosine phosphorylation-mediated signal transduction events induced by the bidirectional communication between patient-derived CAFs and tumor cells. RESULTS: We discovered that distinct signaling events were activated in CAFs and in tumor epithelial cells during the crosstalk between these two cell types. We identified reciprocal activation of a number of receptor tyrosine kinases including EGFR, FGFR1 and EPHA2 induced by this bidirectional communication. CONCLUSIONS: Our study not only provides insights into the mechanisms of the interaction between CAFs and tumor cells, but the model system described here could be used as a prototype for analysis of intercellular communication in many different tumor microenvironments.

4.
Mol Cell ; 40(4): 533-47, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21095584

RESUMO

In a genome-wide siRNA analysis of p16(INK4a) (p16) modulators, we identify the Hedgehog (Hh) pathway component SUFU and formally demonstrate that Hh signaling promotes mitogenesis by suppression of p16. A fragment of the Hh-responsive GLI2 transcription factor directly binds and inhibits the p16 promoter and senescence is associated with the loss of nuclear GLI2. Hh components partially reside in the primary cilium (PC), and the small fraction of cells in mass culture that elaborate a PC have the lowest expression of p16. Suppression of p16 is effected by both PC-dependent and -independent routes, and ablation of p16 renders cells insensitive to an Hh inhibitor and increases PC formation. These results directly link a well-established developmental mitogenic pathway with a key tumor suppressor and contribute to the molecular understanding of replicative senescence, Hh-mediated oncogenesis, and potentially the role of p16 in aging.


Assuntos
Cílios/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Feminino , Genoma Humano/genética , Humanos , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/metabolismo , Adulto Jovem , Proteína Gli2 com Dedos de Zinco
5.
Breast Cancer Res Treat ; 155(1): 37-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26661596

RESUMO

Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER(+)) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Xenografts of one cell line, 184AA3, consistently formed ER(+) adenocarcinomas that had a high proliferative rate and other features consistent with "luminal B" intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44(High) subpopulation was discovered, yet their tumor forming ability was far less than CD44(Low) cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER(+) cancers. This model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing, and drug development.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptores de Estrogênio/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nucleic Acids Res ; 42(3): 1606-18, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24217920

RESUMO

p16 is a key regulator of cellular senescence, yet the drivers of this stable state of proliferative arrest are not well understood. Here, we identify 22 senescence-associated microRNAs (SA-miRNAs) in normal human mammary epithelial cells. We show that SA-miRNAs-26b, 181a, 210 and 424 function in concert to directly repress expression of Polycomb group (PcG) proteins CBX7, embryonic ectoderm development (EED), enhancer of zeste homologue 2 (EZH2) and suppressor of zeste 12 homologue (Suz12), thereby activating p16. We demonstrate the existence of a tight positive feedback loop in which SA-miRNAs activate and re-enforce the expression of other SA-miRNA members. In contrast, PcG members restrain senescence by epigenetically repressing the expression of these SA-miRNAs. Importantly, loss of p16 leads to repression of SA-miRNA expression, intimately coupling this effector of senescence to the SA-miRNA/PcG self-regulatory loop. Taken together, our findings illuminate an important regulatory axis that underpins the transition from proliferation to cellular senescence.


Assuntos
Senescência Celular/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Epigênese Genética , MicroRNAs/metabolismo , Células Cultivadas , Retroalimentação Fisiológica , Fibroblastos/citologia , Fibroblastos/metabolismo , Inativação Gênica , Humanos , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Adulto Jovem
7.
Genome Res ; 21(12): 2026-37, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21873453

RESUMO

Epigenetic mechanisms are important regulators of cell type-specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type-specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type-specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type-specific miRNA expression.


Assuntos
Mama/metabolismo , Epigênese Genética/fisiologia , Fibroblastos/metabolismo , MicroRNAs/biossíntese , Mama/citologia , Linhagem Celular , Feminino , Fibroblastos/citologia , Humanos , Especificidade de Órgãos/fisiologia
8.
Am J Pathol ; 183(5): 1645-1653, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24012678

RESUMO

Both epigenetic silencing and genetic deletion of tumor suppressors contribute to the development and progression of breast cancer. SOX7 is a transcription factor important to development, and its down-regulation has been reported in tumor tissues and cell lines of prostate, colon, and lung cancers. However, the regulation of SOX7 expression and its functional role in breast cancer have not been reported. The current study demonstrates that SOX7 mRNA and protein expression are down-regulated in breast cancer tissues and cell lines compared with adjacent normal tissues and nontumorigenic cells, respectively. The SOX7 promoter is hypermethylated in breast cancer cell lines compared with nontumorigenic cells, and the inhibition of DNA methylation increases SOX7 mRNA levels. With shRNA-mediated SOX7 silencing, nontumorigenic immortal breast cells display increased proliferation, migration, and invasion and form structures that resemble that of breast cancer cells in a three-dimensional culture system. Conversely, ectopic SOX7 expression inhibits proliferation, migration, and invasion of breast cancer cells in vitro and tumor growth in vivo. Importantly, we discovered that SOX7 transcript levels positively correlated with clinical outcome of 674 breast cancer patients. Overall, our data suggest that SOX7 acts as a tumor suppressor in breast cancer. SOX7 expression is likely regulated by multiple mechanisms and potentially serves as a prognostic marker for breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOXF/genética , Proteínas Supressoras de Tumor/genética , Animais , Linhagem Celular Tumoral , Metilação de DNA/genética , Regulação para Baixo/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , Regiões Promotoras Genéticas , Fatores de Transcrição SOXF/metabolismo , Resultado do Tratamento , Proteínas Supressoras de Tumor/metabolismo
9.
Proc Natl Acad Sci U S A ; 108(21): 8668-73, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21555587

RESUMO

Oncogene-induced senescence (OIS), the proliferative arrest engaged in response to persistent oncogene activation, serves as an important tumor-suppressive barrier. We show here that finite lifespan human mammary epithelial cells (HMEC) undergo a p16/RB- and p53-independent OIS in response to oncogenic RAS that requires TGF-ß signaling. Suppression of TGF-ß signaling by expression of a dominant-negative TGF-ß type II receptor, use of a TGF-ß type I receptor inhibitor, or ectopic expression of MYC permitted continued proliferation upon RAS expression. Surprisingly, unlike fibroblasts, shRNA-mediated knockdown of ATM or CHK2 was unable to prevent RAS-mediated OIS, arguing that the DNA damage response is not required for OIS in HMEC. Abrogation of TGF-ß signaling not only allowed HMEC lacking p53 to tolerate oncogenic RAS but also conferred the capacity for anchorage-independent growth. Thus, the OIS engaged after dysregulated RAS expression provides an early barrier to malignant progression and is mediated by TGF-ß receptor activation in HMEC. Understanding the mechanisms that initiate and maintain OIS in epithelial cells may provide a foundation for future therapies aimed at reengaging this proliferative barrier as a cancer therapy.


Assuntos
Transformação Celular Neoplásica , Senescência Celular , Glândulas Mamárias Humanas/citologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas ras/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Quinase do Ponto de Checagem 2 , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais , Humanos , Glândulas Mamárias Humanas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
10.
Proc Natl Acad Sci U S A ; 108(8): 3264-9, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21300877

RESUMO

Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells.


Assuntos
Células Epiteliais/citologia , Glândulas Mamárias Humanas/citologia , Actomiosina/fisiologia , Junções Aderentes/fisiologia , Padronização Corporal , Caderinas/fisiologia , Linhagem da Célula , Células Cultivadas , Técnicas de Cocultura , Humanos
11.
Genes Chromosomes Cancer ; 52(11): 1017-29, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23929738

RESUMO

Chromosomal positions of common fragile sites differ in lymphoblasts and fibroblasts, with positions dependent on the epigenetically determined density of replication origins at these loci. Because rearrangement of fragile loci and associated loss of fragile gene products are hallmarks of cancers, we aimed to map common fragile sites in epithelial cells, from which most cancers derive. Among the five most frequently activated sites in human epithelial cells were chromosome bands 2q33 and Xq22.1, which are not among top fragile sites identified in lymphoblasts or fibroblasts. FRA16D at 16q23 was among the top three fragile sites in the human epithelial cells examined, as it is in lymphoblasts and fibroblasts, while FRA3B at 3p14.2, the top fragile locus in lymphoblasts, was not fragile in most epithelial cell lines tested. Epithelial cells exhibited varying hierarchies of fragile sites; some frequent epithelial cell fragile sites are apparently not frequently altered in epithelial cancers and sites that are frequently deleted in epithelial cancers are not necessarily among the most fragile. Since we have reported that loss of expression of the FRA3B-encoded FHIT protein causes increased replication stress-induced DNA damage, we also examined the effect of FHIT-deficiency on markers of genome instability in epithelial cells. FHIT-deficient cells exhibited increases in fragile breaks and in γH2AX and 53BP1 foci in G1 phase cells, confirming in epithelial cells that the FHIT gene and encompassing FRA3B, is a "caretaker gene" necessary for maintenance of genome stability.


Assuntos
Hidrolases Anidrido Ácido/genética , Sítios Frágeis do Cromossomo/genética , Instabilidade Genômica , Proteínas de Neoplasias/genética , Neoplasias/genética , Animais , Linhagem Celular , Cromossomos Humanos Par 2/genética , Análise Citogenética , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Fase G1/genética , Marcadores Genéticos , Humanos , Camundongos , Interferência de RNA , Origem de Replicação , Análise de Pequenas Áreas , Cromossomo X/genética
12.
Cell Signal ; 113: 110958, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935340

RESUMO

Microenvironment signals are potent determinants of cell fate and arbiters of tissue homeostasis, however understanding how different microenvironment factors coordinately regulate cellular phenotype has been experimentally challenging. Here we used a high-throughput microenvironment microarray comprised of 2640 unique pairwise signals to identify factors that support proliferation and maintenance of primary human mammary luminal epithelial cells. Multiple microenvironment factors that modulated luminal cell number were identified, including: HGF, NRG1, BMP2, CXCL1, TGFB1, FGF2, PDGFB, RANKL, WNT3A, SPP1, HA, VTN, and OMD. All of these factors were previously shown to modulate luminal cell numbers in painstaking mouse genetics experiments, or were shown to have a role in breast cancer, demonstrating the relevance and power of our high-dimensional approach to dissect key microenvironmental signals. RNA-sequencing of primary epithelial and stromal cell lineages identified the cell types that express these signals and the cognate receptors in vivo. Cell-based functional studies confirmed which effects from microenvironment factors were reproducible and robust to individual variation. Hepatocyte growth factor (HGF) was the factor most robust to individual variation and drove expansion of luminal cells via cKit+ progenitor cells, which expressed abundant MET receptor. Luminal cells from women who are genetically high risk for breast cancer had significantly more MET receptor and may explain the characteristic expansion of the luminal lineage in those women. In ensemble, our approach provides proof of principle that microenvironment signals that control specific cellular states can be dissected with high-dimensional cell-based approaches.


Assuntos
Neoplasias da Mama , Células Epiteliais , Feminino , Humanos , Animais , Camundongos , Células Epiteliais/metabolismo , Diferenciação Celular , Neoplasias da Mama/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Microambiente Tumoral
13.
Genome Med ; 16(1): 85, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956711

RESUMO

BACKGROUND: Restraining or slowing ageing hallmarks at the cellular level have been proposed as a route to increased organismal lifespan and healthspan. Consequently, there is great interest in anti-ageing drug discovery. However, this currently requires laborious and lengthy longevity analysis. Here, we present a novel screening readout for the expedited discovery of compounds that restrain ageing of cell populations in vitro and enable extension of in vivo lifespan. METHODS: Using Illumina methylation arrays, we monitored DNA methylation changes accompanying long-term passaging of adult primary human cells in culture. This enabled us to develop, test, and validate the CellPopAge Clock, an epigenetic clock with underlying algorithm, unique among existing epigenetic clocks for its design to detect anti-ageing compounds in vitro. Additionally, we measured markers of senescence and performed longevity experiments in vivo in Drosophila, to further validate our approach to discover novel anti-ageing compounds. Finally, we bench mark our epigenetic clock with other available epigenetic clocks to consolidate its usefulness and specialisation for primary cells in culture. RESULTS: We developed a novel epigenetic clock, the CellPopAge Clock, to accurately monitor the age of a population of adult human primary cells. We find that the CellPopAge Clock can detect decelerated passage-based ageing of human primary cells treated with rapamycin or trametinib, well-established longevity drugs. We then utilise the CellPopAge Clock as a screening tool for the identification of compounds which decelerate ageing of cell populations, uncovering novel anti-ageing drugs, torin2 and dactolisib (BEZ-235). We demonstrate that delayed epigenetic ageing in human primary cells treated with anti-ageing compounds is accompanied by a reduction in senescence and ageing biomarkers. Finally, we extend our screening platform in vivo by taking advantage of a specially formulated holidic medium for increased drug bioavailability in Drosophila. We show that the novel anti-ageing drugs, torin2 and dactolisib (BEZ-235), increase longevity in vivo. CONCLUSIONS: Our method expands the scope of CpG methylation profiling to accurately and rapidly detecting anti-ageing potential of drugs using human cells in vitro, and in vivo, providing a novel accelerated discovery platform to test sought after anti-ageing compounds and geroprotectors.


Assuntos
Envelhecimento , Metilação de DNA , Longevidade , Humanos , Animais , Metilação de DNA/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Descoberta de Drogas/métodos , Senescência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Drosophila , Células Cultivadas , Sirolimo/farmacologia
14.
Oncologist ; 18(10): 1063-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24072219

RESUMO

DNA repair pathways can enable tumor cells to survive DNA damage induced by chemotherapy and thus provide prognostic and/or predictive value. We evaluated Affymetrix gene expression profiles for 145 DNA repair genes in untreated breast cancer (BC) patients (n = 684) and BC patients treated with regimens containing neoadjuvant taxane/anthracycline (n = 294) or anthracycline (n = 210). We independently assessed estrogen receptor (ER)-positive/HER2-negative, HER2-positive, and ER-negative/HER2-negative subgroups for differential expression, bimodal distribution, and the prognostic and predictive value of DNA repair gene expression. Twenty-two genes were consistently overexpressed in ER-negative tumors, and five genes were overexpressed in ER-positive tumors, but no differences in expression were associated with HER2 status. In ER-positive/HER2-negative tumors, the expression of nine genes (BUB1, FANCI, MNAT1, PARP2, PCNA, POLQ, RPA3, TOP2A, and UBE2V2) was associated with poor prognosis, and the expression of one gene (ATM) was associated with good prognosis. Furthermore, the prognostic value of specific genes did not correlate with proliferation. A few genes were associated with chemotherapy response in BC subtypes and treatment-specific manner. In ER-negative/HER2-negative tumors, the MSH2, MSH6, and FAN1 (previously MTMR15) genes were associated with pathological complete response and residual invasive cancer in taxane/anthracycline-treated patients. Conversely, PMS2 expression was associated with residual invasive cancer in treatments using anthracycline as a single agent. In HER2-positive tumors, TOP2A was associated with patient response to anthracyclines but not to taxane/anthracycline regimens. In genes expressed in a bimodal fashion, RECQL4 was significantly associated with clinical outcome. In vitro studies showed that defects in RECQL4 impair homologous recombination, sensitizing BC cells to DNA-damaging agents.


Assuntos
Neoplasias da Mama/genética , Reparo do DNA/genética , Proteínas de Neoplasias/genética , RecQ Helicases/genética , Adulto , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Recombinação Homóloga/genética , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/classificação , Prognóstico , RecQ Helicases/biossíntese , Transcriptoma
15.
Nat Genet ; 36(9): 984-8, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15300252

RESUMO

Transition through telomere crisis is thought to be a crucial event in the development of most breast carcinomas. Our goal in this study was to determine where this occurs in the context of histologically defined breast cancer progression. To this end, we assessed genome instability (using fluorescence in situ hybridization) and other features associated with telomere crisis in normal ductal epithelium, usual ductal hyperplasia, ductal carcinoma in situ and invasive cancer. We modeled this process in vitro by measuring these same features in human mammary epithelial cell cultures during ZNF217-mediated transition through telomere crisis and immortalization. Taken together, the data suggest that transition through telomere crisis and immortalization in breast cancer occurs during progression from usual ductal hyperplasia to ductal carcinoma in situ.


Assuntos
Neoplasias da Mama/genética , Instabilidade Cromossômica , Telômero/diagnóstico por imagem , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Progressão da Doença , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Hibridização In Situ , Células Tumorais Cultivadas , Ultrassonografia
16.
Proc Natl Acad Sci U S A ; 105(37): 14076-81, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18780791

RESUMO

Cellular identity and differentiation are determined by epigenetic programs. The characteristics of these programs in normal human mammary epithelium and their similarity to those in stem cells are unknown. To begin investigating these issues, we analyzed the DNA methylation and gene expression profiles of distinct subpopulations of mammary epithelial cells by using MSDK (methylation-specific digital karyotyping) and SAGE (serial analysis of gene expression). We identified discrete cell-type and differentiation state-specific DNA methylation and gene expression patterns that were maintained in a subset of breast carcinomas and correlated with clinically relevant tumor subtypes. CD44+ cells were the most hypomethylated and highly expressed several transcription factors with known stem cell function including HOXA10 and TCF3. Many of these genes were also hypomethylated in BMP4-treated compared with undifferentiated human embryonic stem (ES) cells that we analyzed by MSDK for comparison. Further highlighting the similarity of epigenetic programs of embryonic and mammary epithelial cells, genes highly expressed in CD44+ relative to more differentiated CD24+ cells were significantly enriched for Suz12 targets in ES cells. The expression of FOXC1, one of the transcription factors hypomethylated and highly expressed in CD44+ cells, induced a progenitor-like phenotype in differentiated mammary epithelial cells. These data suggest that epigenetically controlled transcription factors play a key role in regulating mammary epithelial cell phenotypes and imply similarities among epigenetic programs that define progenitor cell characteristics.


Assuntos
Mama/metabolismo , Metilação de DNA , Mama/citologia , Contagem de Células , Forma Celular , Células Epiteliais/citologia , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fenótipo , Células-Tronco/metabolismo , Especificidade por Substrato
17.
Nat Aging ; 1(9): 838-849, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35187501

RESUMO

During aging in the human mammary gland, luminal epithelial cells lose lineage fidelity by expressing markers normally expressed in myoepithelial cells. We hypothesize that loss of lineage fidelity is a general manifestation of epithelia that are susceptible to cancer initiation. In the present study, we show that histologically normal breast tissue from younger women who are susceptible to breast cancer, as a result of harboring a germline mutation in BRCA1, BRCA2 or PALB2 genes, exhibits hallmarks of accelerated aging. These include proportionately increased luminal epithelial cells that acquired myoepithelial markers, decreased proportions of myoepithelial cells and a basal differentiation bias or failure of differentiation of cKit+ progenitors. High-risk luminal and myoepithelial cells are transcriptionally enriched for genes of the opposite lineage, inflammatory- and cancer-related pathways. We have identified breast-aging hallmarks that reflect a convergent biology of cancer susceptibility, regardless of the specific underlying genetic or age-dependent risk or the associated breast cancer subtype.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Humanos , Feminino , Envelhecimento/genética , Mama/patologia , Mutação em Linhagem Germinativa/genética , Neoplasias da Mama/genética , Proteína BRCA1/genética , Proteína BRCA2/genética
18.
Aging Cell ; 20(3): e13318, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33547862

RESUMO

Senescence, a state of stable growth arrest, plays an important role in ageing and age-related diseases in vivo. Although the INK4/ARF locus is known to be essential for senescence programmes, the key regulators driving p16 and ARF transcription remain largely underexplored. Using siRNA screening for modulators of the p16/pRB and ARF/p53/p21 pathways in deeply senescent human mammary epithelial cells (DS HMECs) and fibroblasts (DS HMFs), we identified EGR2 as a novel regulator of senescence. EGR2 expression is up-regulated during senescence, and its ablation by siRNA in DS HMECs and HMFs transiently reverses the senescent phenotype. We demonstrate that EGR2 activates the ARF and p16 promoters and directly binds to both the ARF and p16 promoters. Loss of EGR2 down-regulates p16 levels and increases the pool of p16- p21- 'reversed' cells in the population. Moreover, EGR2 overexpression is sufficient to induce senescence. Our data suggest that EGR2 is a direct transcriptional activator of the p16/pRB and ARF/p53/p21 pathways in senescence and a novel marker of senescence.


Assuntos
Senescência Celular , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Adolescente , Adulto , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Glândulas Mamárias Humanas/citologia , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Adulto Jovem
19.
Cancer Prev Res (Phila) ; 14(8): 779-794, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34140348

RESUMO

A robust breast cancer prevention strategy requires risk assessment biomarkers for early detection. We show that expression of ELF5, a transcription factor critical for normal mammary development, is downregulated in mammary luminal epithelia with age. DNA methylation of the ELF5 promoter is negatively correlated with expression in an age-dependent manner. Both ELF5 methylation and gene expression were used to build biological clocks to estimate chronological ages of mammary epithelia. ELF5 clock-based estimates of biological age in luminal epithelia from average-risk women were within three years of chronological age. Biological ages of breast epithelia from BRCA1 or BRCA2 mutation carriers, who were high risk for developing breast cancer, suggested they were accelerated by two decades relative to chronological age. The ELF5 DNA methylation clock had better performance at predicting biological age in luminal epithelial cells as compared with two other epigenetic clocks based on whole tissues. We propose that the changes in ELF5 expression or ELF5-proximal DNA methylation in luminal epithelia are emergent properties of at-risk breast tissue and constitute breast-specific biological clocks. PREVENTION RELEVANCE: ELF5 expression or DNA methylation level at the ELF5 promoter region can be used as breast-specific biological clocks to identify women at higher than average risk of breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Mama/metabolismo , Relógios Circadianos/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Adulto , Biomarcadores Tumorais/genética , Mama/patologia , Neoplasias da Mama/patologia , Transformação Celular Neoplásica , Células Cultivadas , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Detecção Precoce de Câncer/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Humanos , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
20.
iScience ; 23(11): 101649, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33103086

RESUMO

The receptor tyrosine kinase AXL is associated with epithelial plasticity in several solid tumors including breast cancer and AXL-targeting agents are currently in clinical trials. We hypothesized that AXL is a driver of stemness traits in cancer by co-option of a regulatory function normally reserved for stem cells. AXL-expressing cells in human mammary epithelial ducts co-expressed markers associated with multipotency, and AXL inhibition abolished colony formation and self-maintenance activities while promoting terminal differentiation in vitro. Axl-null mice did not exhibit a strong developmental phenotype, but enrichment of Axl + cells was required for mouse mammary gland reconstitution upon transplantation, and Axl-null mice had reduced incidence of Wnt1-driven mammary tumors. An AXL-dependent gene signature is a feature of transcriptomes in basal breast cancers and reduced patient survival irrespective of subtype. Our interpretation is that AXL regulates access to epithelial plasticity programs in MaSCs and, when co-opted, maintains acquired stemness in breast cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA