Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 26(8): 4417-4430, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31796894

RESUMO

Reward modulates the saliency of a specific drug exposure and is essential for the transition to addiction. Numerous human PET-fMRI studies establish a link between midbrain dopamine (DA) release, DA transporter (DAT) availability, and reward responses. However, how and whether DAT function and regulation directly participate in reward processes remains elusive. Here, we developed a novel experimental paradigm in Drosophila melanogaster to study the mechanisms underlying the psychomotor and rewarding properties of amphetamine (AMPH). AMPH principally mediates its pharmacological and behavioral effects by increasing DA availability through the reversal of DAT function (DA efflux). We have previously shown that the phospholipid, phosphatidylinositol (4, 5)-bisphosphate (PIP2), directly interacts with the DAT N-terminus to support DA efflux in response to AMPH. In this study, we demonstrate that the interaction of PIP2 with the DAT N-terminus is critical for AMPH-induced DAT phosphorylation, a process required for DA efflux. We showed that PIP2 also interacts with intracellular loop 4 at R443. Further, we identified that R443 electrostatically regulates DA efflux as part of a coordinated interaction with the phosphorylated N-terminus. In Drosophila, we determined that a neutralizing substitution at R443 inhibited the psychomotor actions of AMPH. We associated this inhibition with a decrease in AMPH-induced DA efflux in isolated fly brains. Notably, we showed that the electrostatic interactions of R443 specifically regulate the rewarding properties of AMPH without affecting AMPH aversion. We present the first evidence linking PIP2, DAT, DA efflux, and phosphorylation processes with AMPH reward.


Assuntos
Anfetamina , Proteínas da Membrana Plasmática de Transporte de Dopamina , Anfetamina/farmacologia , Animais , Sítios de Ligação , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Drosophila melanogaster , Fosfatidilinositóis
2.
J Biol Chem ; 290(48): 29095-105, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26424792

RESUMO

The dopamine transporter is a neuronal protein that drives the presynaptic reuptake of dopamine (DA) and is the major determinant of transmitter availability in the brain. Dopamine transporter function is regulated by protein kinase C (PKC) and other signaling pathways through mechanisms that are complex and poorly understood. Here we investigate the role of Ser-7 phosphorylation and Cys-580 palmitoylation in mediating steady-state transport kinetics and PKC-stimulated transport down-regulation. Using both mutational and pharmacological approaches, we demonstrate that these post-translational modifications are reciprocally regulated, leading to transporter populations that display high phosphorylation-low palmitoylation or low phosphorylation-high palmitoylation. The balance between the modifications dictates transport capacity, as conditions that promote high phosphorylation or low palmitoylation reduce transport Vmax and enhance PKC-stimulated down-regulation, whereas conditions that promote low phosphorylation or high palmitoylation increase transport Vmax and suppress PKC-stimulated down-regulation. Transitions between these functional states occur when endocytosis is blocked or undetectable, indicating that the modifications kinetically regulate the velocity of surface transporters. These findings reveal a novel mechanism for control of DA reuptake that may represent a point of dysregulation in DA imbalance disorders.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Regulação para Baixo/fisiologia , Endocitose/fisiologia , Lipoilação/fisiologia , Proteína Quinase C/metabolismo , Linhagem Celular , Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Humanos , Cinética , Proteína Quinase C/genética
3.
ACS Chem Neurosci ; 10(6): 2707-2717, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30965003

RESUMO

The dopamine transporter (DAT) is a plasma membrane protein that mediates the reuptake of extracellular dopamine (DA) and controls the spatiotemporal dynamics of dopaminergic neurotransmission. The transporter is subject to fine control that tailors clearance of transmitter to physiological demands, and dysregulation of reuptake induced by psychostimulant drugs, transporter polymorphisms, and signaling defects may impact transmitter tone in disease states. We previously demonstrated that DAT undergoes complex regulation by palmitoylation, with acute inhibition of the modification leading to rapid reduction of transport activity and sustained inhibition of the modification leading to transporter degradation and reduced expression. Here, to examine mechanisms and outcomes related to increased modification, we coexpressed DAT with palmitoyl acyltransferases (PATs), also known as DHHC enzymes, which catalyze palmitate addition to proteins. Of 12 PATs tested, DAT palmitoylation was stimulated by DHHC2, DHHC3, DHHC8, DHHC15, and DHHC17, with others having no effect. Increased modification was localized to previously identified palmitoylation site Cys580 and resulted in upregulation of transport kinetics and elevated transporter expression mediated by reduced degradation. These findings confirm palmitoylation as a regulator of multiple DAT properties crucial for appropriate DA homeostasis and identify several potential PAT pathways linked to these effects. Defects in palmitoylation processes thus represent possible mechanisms of transport imbalances in DA disorders.


Assuntos
Aciltransferases/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Lipoilação/fisiologia , Animais , Estabilidade Proteica , Ratos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA