Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecology ; 97(6): 1566-82, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27459786

RESUMO

Salvage logging following windthrow is common throughout forests worldwide even though the practice is often considered inimical to forest recovery. Because salvaging removes trees, crushes seedlings, and compacts soils, many warn this practice may delay succession, suppress diversity, and alter composition. Here, over 8 yr following windthrow, we experimentally evaluate how salvaging affects tree succession across 11 gaps in Eastern deciduous forests of Pennsylvania, wherein each gap was divided into salvaged and control (unsalvaged) halves. Our gaps vary in size and windthrow severity, and we explicitly account for this variation as well as variation in soil disturbance (i.e., scarification) resulting from salvaging so that our results would be generalizable. Salvage logging had modest and ephemeral impacts on tree succession. Seedling richness and density declined similarly over time in both salvaged and unsalvaged areas as individuals grew into saplings. The primary impact of salvaging on succession occurred where salvaging scarified soils. Here, salvaging caused 41 to 82% declines in sapling abundance, richness, and diversity, but these differences largely disappeared within 5 yr. Additionally, we documented interactions between windthrow severity and scarification. Specifically, low-severity windthrow and scarification combined reinforced dominance by shade-tolerant and browse-tolerant species (Acer pensylvanicum, Fagus grandifolia). In contrast, high windthrow severity and scarification together reduced the density of a fast-growing pioneer tree (Prunus pensylvanica) and non-tree vegetation cover by 75% and 26%, respectively. This reduction enhanced the recruitment of two mid-successional tree species, Acer rubrum and Prunus serotina, by 2 and 3-fold, respectively. Thus, our findings demonstrate that salvaging creates novel microsites and mitigates competing vegetation, thereby enhancing establishment of important hardwoods and promoting tree species coexistence. Our results, coupled with an assessment of 27 published post-windthrow salvage studies, suggest short-term studies may overestimate the impact of salvaging on regeneration. We conclude that the ecological costs and benefits of salvaging depend upon the variation in canopy and soil disturbance severity as well as the timescale at which effects are evaluated. Thus, our findings are inconsistent with the view that salvaging inexorably undermines plant diversity; rather we suggest salvaging can promote tree species coexistence within various contexts.


Assuntos
Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , Florestas , Atividades Humanas , Árvores/classificação , Monitoramento Ambiental , Especificidade da Espécie
2.
Ecol Appl ; 21(6): 1895-901, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21939032

RESUMO

Although primarily used to mitigate economic losses following disturbance, salvage logging has also been justified on the basis of reducing fire risk and fire severity; however, its ability to achieve these secondary objectives remains unclear. The patchiness resulting from a sequence of recent disturbances-blowdown, salvage logging, and wildfire-provided an excellent opportunity to assess the impacts of blowdown and salvage logging on wildfire severity. We used two fire-severity assessments (tree-crown and forest-floor characteristics) to compare post-wildfire conditions among three treatment combinations (Blowdown-Salvage-Fire, Blowdown-Fire, and Fire only). Our results suggest that salvage logging reduced the intensity (heat released) of the subsequent fire. However, its effect on severity (impact to the system) differed between the tree crowns and forest floor: tree-crown indices suggest that salvage logging decreased fire severity (albeit with modest statistical support), while forest-floor indices suggest that salvage logging increased fire severity. We attribute the latter finding to the greater exposure of mineral soil caused by logging operations; once exposed, soils are more likely to register the damaging effects of fire, even if fire intensity is not extreme. These results highlight the important distinction between fire intensity and severity when formulating post-disturbance management prescriptions.


Assuntos
Incêndios , Agricultura Florestal/métodos , Traqueófitas/fisiologia , Árvores , Ecossistema , Minnesota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA