Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 106(8): 2571-6, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19190181

RESUMO

The L1 stalk is a mobile domain of the large ribosomal subunit E site that interacts with the elbow of deacylated tRNA during protein synthesis. Here, by using single-molecule FRET, we follow the real-time dynamics of the L1 stalk and observe its movement relative to the body of the large subunit between at least 3 distinct conformational states: open, half-closed, and fully closed. Pretranslocation ribosomes undergo spontaneous fluctuations between the open and fully closed states. In contrast, posttranslocation ribosomes containing peptidyl-tRNA and deacylated tRNA in the classical P/P and E/E states, respectively, are fixed in the half-closed conformation. In ribosomes with a vacant E site, the L1 stalk is observed either in the fully closed or fully open conformation. Several lines of evidence show that the L1 stalk can move independently of intersubunit rotation. Our findings support a model in which the mobility of the L1 stalk facilitates binding, movement, and release of deacylated tRNA by remodeling the structure of the 50S subunit E site between 3 distinct conformations, corresponding to the E/E vacant, P/E hybrid, and classical states.


Assuntos
Ribossomos/metabolismo , Acilação , Transferência Ressonante de Energia de Fluorescência , Conformação de Ácido Nucleico , RNA de Transferência/química , RNA de Transferência/metabolismo
2.
Chembiochem ; 9(1): 93-102, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-18058789

RESUMO

Aminoglycoside antibiotics are small-molecule drugs that bind RNA. The affinity and specificity of aminoglycoside binding to RNA can be increased through chemical modification, such as guanidinylation. Here, we report the binding of guanidinoneomycin B (GNB) to an RNA helix from the HIV-1 frameshift site. The binding of GNB increases the melting temperature (T(m)) of the frameshift-site RNA by at least 10 degrees C, to a point at which a melting transition is not even observed in 2 M urea. A structure of the complex was obtained by using multidimensional heteronuclear NMR spectroscopic methods. We also used a novel paramagnetic-probe assay to identify the site of GNB binding to the surface of the RNA. GNB makes major-groove contacts to two sets of Watson-Crick bases and is in van der Waals contact with a highly structured ACAA tetraloop. Rings I and II of GNB fit into the major groove and form the binding interface with the RNA, whereas rings III and IV are exposed to the solvent and disordered. The binding of GNB causes a broadening of the major groove across the binding site.


Assuntos
Aminoglicosídeos/metabolismo , HIV-1/genética , RNA Viral/metabolismo , Aminoglicosídeos/química , Aminoglicosídeos/genética , Sequência de Bases , Sítios de Ligação , Mudança da Fase de Leitura do Gene Ribossômico/genética , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos dos fármacos , Desnaturação de Ácido Nucleico/efeitos dos fármacos , RNA Viral/química , RNA Viral/genética , Especificidade por Substrato , Termodinâmica , Ureia/farmacologia
3.
J Mol Biol ; 373(3): 652-63, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17868691

RESUMO

Simian immunodeficiency virus (SIV), like its human homologues (HIV-1, HIV-2), requires a -1 translational frameshift event to properly synthesize all of the proteins required for viral replication. The frameshift mechanism is dependent upon a seven-nucleotide slippery sequence and a downstream RNA structure. In SIV, the downstream RNA structure has been proposed to be either a stem-loop or a pseudoknot. Here, we report the functional, structural and thermodynamic characterization of the SIV frameshift site RNA. Translational frameshift assays indicate that a stem-loop structure is sufficient to promote efficient frameshifting in vitro. NMR and thermodynamic studies of SIV RNA constructs of varying length further support the absence of any pseudoknot interaction and indicate the presence of a stable stem-loop structure. We determined the structure of the SIV frameshift-inducing RNA by NMR. The structure reveals a highly ordered 12 nucleotide loop containing a sheared G-A pair, cross-strand adenine stacking, two G-C base-pairs, and a novel CCC triloop turn. The loop structure and its high thermostability preclude pseudoknot formation. Sequence conservation and modeling studies suggest that HIV-2 RNA forms the same structure. We conclude that, like the main sub-groups of HIV-1, SIV and HIV-2 utilize stable stem-loop structures to function as a thermodynamic barrier to translation, thereby inducing ribosomal pausing and frameshifting.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , RNA Viral/química , Vírus da Imunodeficiência Símia/genética , Sequência de Bases , HIV-1/química , HIV-1/genética , HIV-2/química , HIV-2/genética , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Homologia de Sequência do Ácido Nucleico , Vírus da Imunodeficiência Símia/química
4.
J Mol Biol ; 349(5): 1011-23, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15927637

RESUMO

Expression of the HIV reverse transcriptase and other essential viral enzymes requires a -1 translational frameshift. The frameshift event is induced by two highly conserved RNA elements within the HIV-1 mRNA: a UUUUUUA heptamer known as the slippery sequence, and a downstream RNA structure. Here, we report structural and thermodynamic evidence that the HIV-1 frameshift site RNA forms a stem-loop and lower helix separated by a three-purine bulge. We have determined the structure of the 45 nucleotide frameshift site RNA using multidimensional heteronuclear nuclear magnetic resonance (NMR) methods. The upper helix is highly thermostable (T(m)>90 degrees C), forming 11 Watson-Crick base-pairs capped by a stable ACAA tetraloop. The eight base-pair lower helix was found to be only moderately stable (T(m)=47 degrees C). A three-purine bulge separates the highly stable upper helix from the lower helix. Base stacking in the bulge forms a wedge, introducing a 60 degrees bend between the helices. Interestingly, this bend is similar to those seen in a number of frameshift inducing pseudoknots for which structures have been solved. The lower helix must denature to allow the ribosome access to the slippery site, but likely functions as a positioning element that enhances frameshift efficiency.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , HIV-1/genética , RNA Viral/genética , Regulação Viral da Expressão Gênica , HIV-1/química , Humanos , Metais/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Estabilidade de RNA , RNA Viral/química , Ribossomos/química , Ribossomos/genética , Soluções , Termodinâmica
5.
Nucleic Acids Res ; 31(15): 4326-31, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12888491

RESUMO

The translation of reverse transcriptase and other essential viral proteins from the HIV-1 Pol mRNA requires a programmed -1 ribosomal frameshift. This frameshift is induced by two highly conserved elements within the HIV-1 mRNA: a slippery sequence comprised of a UUUUUUA heptamer, and a downstream stem-loop structure. We have determined the structure of the HIV-1 frameshift inducing RNA stem-loop, using multidimensional heteronuclear nuclear magnetic resonance (NMR) methods. The 22 nucleotide RNA solution structure [root mean squared deviation (r.m.s.d.) = 1.2 A] was determined from 475 nuclear Overhauser effect (NOE)-derived distance restrains, 20 residual dipolar couplings and direct detection of hydrogen bonds via scalar couplings. We find that the frameshift inducing stem-loop is an A-form helix capped by a structured ACAA tetraloop. The ACAA tetraloop is stabilized by an equilateral 5' and 3' stacking pattern, a sheared A-A pair and a cross-strand hydrogen bond. Unexpectedly, the ACAA tetraloop structure is nearly identical to a known tetraloop fold, previously identified in the RNase III recognition site from Saccharomyces cerevisiae.


Assuntos
HIV-1/genética , Modelos Moleculares , RNA Viral/química , Adenina/química , Sequência de Bases , Mudança da Fase de Leitura do Gene Ribossômico , Ligação de Hidrogênio , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA