Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Arch Biochem Biophys ; 705: 108892, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33930377

RESUMO

Exhaustive physical exercises are potentially dangerous for human's physical health and may lead to chronic heart disease. Therefore, individuals involved in such activity require effective and safe cardioprotectors. The goal of this research was to study Mildronate (a cardioprotective drug) effect on the level of oxidative stress markers in hearts of mice under conditions of exhausting physical exercise, such as forced swimming for 1 h per day for 7 days. Forced swimming lead to mtDNA damage accumulation, increase in diene conjugates level and loss of reduced glutathione despite an increase in antioxidant genes expression and activation of mitochondrial biogenesis. Mildronate treatment reduced oxidative stress, probably due to the inhibition of fatty acids transport to mitochondria and an increase in the intensity of glucose oxidation, which in part confirms by increase in glucose transporter expression. Thus, we can assume that Mildronate is an effective cardioprotector in exhaustive physical exercises.


Assuntos
DNA Mitocondrial/metabolismo , Metilidrazinas/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal/efeitos adversos , Animais , Antioxidantes/metabolismo , Citoproteção/efeitos dos fármacos , Masculino , Camundongos
2.
Hum Mol Genet ; 27(16): 2874-2892, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29860433

RESUMO

Impaired glucose metabolism, decreased levels of thiamine and its phosphate esters, and reduced activity of thiamine-dependent enzymes, such as pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and transketolase occur in Alzheimer's disease (AD). Thiamine deficiency exacerbates amyloid beta (Aß) deposition, tau hyperphosphorylation and oxidative stress. Benfotiamine (BFT) rescued cognitive deficits and reduced Aß burden in amyloid precursor protein (APP)/PS1 mice. In this study, we examined whether BFT confers neuroprotection against tau phosphorylation and the generation of neurofibrillary tangles (NFTs) in the P301S mouse model of tauopathy. Chronic dietary treatment with BFT increased lifespan, improved behavior, reduced glycated tau, decreased NFTs and prevented death of motor neurons. BFT administration significantly ameliorated mitochondrial dysfunction and attenuated oxidative damage and inflammation. We found that BFT and its metabolites (but not thiamine) trigger the expression of Nrf2/antioxidant response element (ARE)-dependent genes in mouse brain as well as in wild-type but not Nrf2-deficient fibroblasts. Active metabolites were more potent in activating the Nrf2 target genes than the parent molecule BFT. Docking studies showed that BFT and its metabolites (but not thiamine) bind to Keap1 with high affinity. These findings demonstrate that BFT activates the Nrf2/ARE pathway and is a promising therapeutic agent for the treatment of diseases with tau pathology, such as AD, frontotemporal dementia and progressive supranuclear palsy.


Assuntos
Elementos de Resposta Antioxidante/genética , Fator 2 Relacionado a NF-E2/genética , Agregação Patológica de Proteínas/tratamento farmacológico , Tauopatias/tratamento farmacológico , Tiamina/análogos & derivados , Peptídeos beta-Amiloides/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos , Camundongos Transgênicos , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Transdução de Sinais/efeitos dos fármacos , Tauopatias/genética , Tauopatias/fisiopatologia , Tiamina/administração & dosagem , Proteínas tau/genética
3.
Pestic Biochem Physiol ; 169: 104675, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828362

RESUMO

Bumblebees are important for crop pollination. Currently, the number of pollinators is decreasing worldwide, which is attributed mostly to the widespread use of pesticides. The aim of this work was to develop a method for assessing the genotoxicity of pesticides for the Bombus terrestris L. bumblebee using long-range PCR of mitochondrial DNA fragments. We have developed a panel of primers and assessed the genotoxicity of the following pesticides: imidacloprid, rotenone, deltamethrin, difenocanozole, malathion, metribuzin, penconazole, esfenvalerate, and dithianon. All pesticides (except imidacloprid) inhibited mitochondrial respiration fueled by pyruvate + malate; the strongest effect was observed for rotenone and difenocanozole. Three pesticides (dithianon, rotenone, and difenocanozole) affected the rate of H2O2 production. To study the pesticide-induced DNA damage in vitro and in vivo, we used three different mtDNA. The mtDNA damage was observed for all studied pesticides. Most of the studied pesticides caused significant damage to mtDNA in vitro and in vivo when ingested. Our results indicate that all tested pesticides, including herbicides and fungicides, can have a toxic effect on pollinators. However, the extent of pesticide-induced mtDNA damage in the flight muscles was significantly less upon the contact compared to the oral administration.


Assuntos
DNA Mitocondrial , Praguicidas , Animais , Abelhas , Peróxido de Hidrogênio , Mitocôndrias , Polinização
4.
Arch Insect Biochem Physiol ; 102(1): e21595, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31276240

RESUMO

Honey bees Apis mellifera L. are one of the most studied insect species due to their economic importance. The interest in studying honey bees chiefly stems from the recent rapid decrease in their world population, which has become a problem of food security. Nevertheless, there are no systemic studies on the properties of the mitochondria of honey bee flight muscles. We conducted a research of the mitochondria of the flight muscles of A. mellifera L. The influence of various organic substrates on mitochondrial respiration in the presence or absence of adenosine diphosphate (ADP) was investigated. We demonstrated that pyruvate is the optimal substrate for the coupled respiration. A combination of pyruvate and glutamate is required for the maximal respiration rate. We also show that succinate oxidation does not support the oxidative phosphorylation and the generation of membrane potential. We also studied the production of reactive oxygen species by isolated mitochondria. The greatest production of H2 O2 (as a percentage of the rate of oxygen consumed) in the absence of ADP was observed during the respiration supported by α-glycerophosphate, malate, and a combination of malate with another NAD-linked substrate. We showed that honey bee flight muscle mitochondria are unable to uptake Ca2+ -ions. We also show that bee mitochondria are able to oxidize the respiration substrates effectively at the temperature of 50°Ð¡ compared to Bombus terrestris mitochondria, which were more adapted to lower temperatures.


Assuntos
Abelhas/metabolismo , Mitocôndrias Musculares/metabolismo , Animais , Cálcio/metabolismo , Respiração Celular , Feminino , Voo Animal , Peróxido de Hidrogênio/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Músculos/metabolismo , Temperatura
5.
Biochim Biophys Acta Bioenerg ; 1859(6): 423-433, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29550215

RESUMO

Recent evidence highlights a role for sex and hormonal status in regulating cellular responses to ischemic brain injury and neurodegeneration. A key pathological event in ischemic brain injury is the opening of a mitochondrial permeability transition pore (MPT) induced by excitotoxic calcium levels, which can trigger irreversible damage to mitochondria accompanied by the release of pro-apoptotic factors. However, sex differences in brain MPT modulation have not yet been explored. Here, we show that mitochondria isolated from female mouse forebrain have a lower calcium threshold for MPT than male mitochondria, and that this sex difference depends on the MPT regulator cyclophilin D (CypD). We also demonstrate that an estrogen receptor beta (ERß) antagonist inhibits MPT and knockout of ERß decreases the sensitivity of mitochondria to the CypD inhibitor, cyclosporine A. These results suggest a functional relationship between ERß and CypD in modulating brain MPT. Moreover, co-immunoprecipitation studies identify several ERß binding partners in mitochondria. Among these, we investigate the mitochondrial ATPase as a putative site of MPT regulation by ERß. We find that previously described interaction between the oligomycin sensitivity-conferring subunit of ATPase (OSCP) and CypD is decreased by ERß knockout, suggesting that ERß modulates MPT by regulating CypD interaction with OSCP. Functionally, in primary neurons and hippocampal slice cultures, modulation of ERß has protective effects against glutamate toxicity and oxygen glucose deprivation, respectively. Taken together, these results reveal a novel pathway of brain MPT regulation by ERß that could contribute to sex differences in ischemic brain injury and neurodegeneration.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte/genética , Ciclofilinas/genética , Receptor beta de Estrogênio/genética , Hipocampo/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Prosencéfalo/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Células COS , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Peptidil-Prolil Isomerase F , Ciclofilinas/antagonistas & inibidores , Ciclofilinas/deficiência , Ciclosporina/farmacologia , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/deficiência , Feminino , Hipocampo/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtomia , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , ATPases Mitocondriais Próton-Translocadoras , Piperidinas/farmacologia , Prosencéfalo/efeitos dos fármacos , Ligação Proteica , Pirazóis/farmacologia , Fatores Sexuais , Técnicas de Cultura de Tecidos
6.
J Neurosci ; 36(23): 6332-51, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27277809

RESUMO

UNLABELLED: A promising approach to neurotherapeutics involves activating the nuclear-factor-E2-related factor 2 (Nrf2)/antioxidant response element signaling, which regulates expression of antioxidant, anti-inflammatory, and cytoprotective genes. Tecfidera, a putative Nrf2 activator, is an oral formulation of dimethylfumarate (DMF) used to treat multiple sclerosis. We compared the effects of DMF and its bioactive metabolite monomethylfumarate (MMF) on Nrf2 signaling and their ability to block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental Parkinson's disease (PD). We show that in vitro DMF and MMF activate the Nrf2 pathway via S-alkylation of the Nrf2 inhibitor Keap1 and by causing nuclear exit of the Nrf2 repressor Bach1. Nrf2 activation by DMF but not MMF was associated with depletion of glutathione, decreased cell viability, and inhibition of mitochondrial oxygen consumption and glycolysis rates in a dose-dependent manner, whereas MMF increased these activities in vitro However, both DMF and MMF upregulated mitochondrial biogenesis in vitro in an Nrf2-dependent manner. Despite the in vitro differences, both DMF and MMF exerted similar neuroprotective effects and blocked MPTP neurotoxicity in wild-type but not in Nrf2 null mice. Our data suggest that DMF and MMF exhibit neuroprotective effects against MPTP neurotoxicity because of their distinct Nrf2-mediated antioxidant, anti-inflammatory, and mitochondrial functional/biogenetic effects, but MMF does so without depleting glutathione and inhibiting mitochondrial and glycolytic functions. Given that oxidative damage, neuroinflammation, and mitochondrial dysfunction are all implicated in PD pathogenesis, our results provide preclinical evidence for the development of MMF rather than DMF as a novel PD therapeutic. SIGNIFICANCE STATEMENT: Almost two centuries since its first description by James Parkinson, Parkinson's disease (PD) remains an incurable disease with limited symptomatic treatment. The current study provides preclinical evidence that a Food and Drug Administration-approved drug, dimethylfumarate (DMF), and its metabolite monomethylfumarate (MMF) can block nigrostriatal dopaminergic neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD. We elucidated mechanisms by which DMF and its active metabolite MMF activates the redox-sensitive transcription factor nuclear-factor-E2-related factor 2 (Nrf2) to upregulate antioxidant, anti-inflammatory, mitochondrial biosynthetic and cytoprotective genes to render neuroprotection via distinct S-alkylating properties and depletion of glutathione. Our data suggest that targeting Nrf2-mediated gene transcription using MMF rather than DMF is a promising approach to block oxidative stress, neuroinflammation, and mitochondrial dysfunction for therapeutic intervention in PD while minimizing side effects.


Assuntos
Fumaratos/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Antígenos CD/metabolismo , Linhagem Celular Transformada , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fumaratos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Maleatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Transtornos Parkinsonianos/prevenção & controle , Ratos , Tirosina/análogos & derivados , Tirosina/farmacologia
7.
J Bioenerg Biomembr ; 49(1): 3-11, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26971498

RESUMO

We demonstrate a suppression of ROS production and uncoupling of mitochondria by exogenous citrate in Mg2+ free medium. Exogenous citrate suppressed H2O2 emission and depolarized mitochondria. The depolarization was paralleled by the stimulation of respiration of mitochondria. The uncoupling action of citrate was independent of the presence of sodium, potassium, or chlorine ions, and it was not mediated by the changes in permeability of the inner mitochondrial membrane to solutes. The citrate transporter was not involved in the citrate effect. Inhibitory analysis data indicated that several well described mitochondria carriers and channels (ATPase, IMAC, ADP/ATP translocase, mPTP, mKATP) were not involved in citrate's effect. Exogenous MgCl2 strongly inhibited citrate-induced depolarization. The uncoupling effect of citrate was demonstrated in rat brain, mouse brain, mouse liver, and human melanoma cells mitochondria. We interpreted the data as an evidence to the existence of a hitherto undescribed putative inner mitochondrial membrane channel that is regulated by extramitochondrial Mg2+ or other divalent cations.


Assuntos
Cátions Bivalentes/farmacologia , Ácido Cítrico/farmacologia , Ácido Edético/farmacologia , Cloreto de Magnésio/farmacologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Transporte Biológico , Encéfalo/ultraestrutura , Humanos , Peróxido de Hidrogênio/metabolismo , Canais Iônicos/metabolismo , Melanoma/patologia , Melanoma/ultraestrutura , Camundongos , Ratos , Espécies Reativas de Oxigênio/metabolismo
8.
Pestic Biochem Physiol ; 135: 41-46, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28043329

RESUMO

Insects pollinate 75% of crops used for human consumption. Over the last decade, a substantial reduction in the abundance of pollinating insects has been recorded and recognized as a severe matter for food supply security. Many of the important food crops destined for human consumption are grown in greenhouses. A unique feature of greenhouse agriculture is the extensive use of fungicides to curb multiple fungal infections. The most widely used pollinating insects in greenhouses are commercially reared bumblebees. However, there is no data regarding the toxicity of fungicides to bumblebee mitochondria. To fill this gap in knowledge, we examined the effects of 16 widely used fungicides on the energetics of the flight muscles mitochondria of Bombus terrestris. We found that diniconazole and fludioxonil uncoupled the respiration of mitochondria; dithianon and difenoconazole inhibited it. By analyzing the action of these inhibitors on mitochondrial respiration and generation of reactive oxygen species, we concluded that difenoconazole inhibited electron transport at the level of Complex I and glycerol-3-phosphate dehydrogenase. Dithianon strongly inhibited succinate dehydrogenase and glycerol-3-phosphate dehydrogenase. It also strongly inhibited mitochondrial oxidation of NAD-linked substrates or glycerol 3-phosphate, but it had no effect on the enzymatic activity of Complex I. It may be suggested that dithianon inhibits electron transport downstream of Complex I, likely at multiply sites.


Assuntos
Abelhas , Fungicidas Industriais/toxicidade , Mitocôndrias Musculares/efeitos dos fármacos , Animais , Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Glicerolfosfato Desidrogenase/antagonistas & inibidores , Glicerolfosfato Desidrogenase/metabolismo , Glicerofosfatos/metabolismo , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , NADH Desidrogenase/antagonistas & inibidores , NADH Desidrogenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo
9.
Hum Mol Genet ; 23(14): 3716-32, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24556215

RESUMO

Methylene blue (MB, methylthioninium chloride) is a phenothiazine that crosses the blood brain barrier and acts as a redox cycler. Among its beneficial properties are its abilities to act as an antioxidant, to reduce tau protein aggregation and to improve energy metabolism. These actions are of particular interest for the treatment of neurodegenerative diseases with tau protein aggregates known as tauopathies. The present study examined the effects of MB in the P301S mouse model of tauopathy. Both 4 mg/kg MB (low dose) and 40 mg/kg MB (high dose) were administered in the diet ad libitum from 1 to 10 months of age. We assessed behavior, tau pathology, oxidative damage, inflammation and numbers of mitochondria. MB improved the behavioral abnormalities and reduced tau pathology, inflammation and oxidative damage in the P301S mice. These beneficial effects were associated with increased expression of genes regulated by NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE), which play an important role in antioxidant defenses, preventing protein aggregation, and reducing inflammation. The activation of Nrf2/ARE genes is neuroprotective in other transgenic mouse models of neurodegenerative diseases and it appears to be an important mediator of the neuroprotective effects of MB in P301S mice. Moreover, we used Nrf2 knock out fibroblasts to show that the upregulation of Nrf2/ARE genes by MB is Nrf2 dependent and not due to secondary effects of the compound. These findings provide further evidence that MB has important neuroprotective effects that may be beneficial in the treatment of human neurodegenerative diseases with tau pathology.


Assuntos
Azul de Metileno/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Tauopatias/tratamento farmacológico , Proteínas tau/genética , Proteínas tau/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Linhagem Celular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Azul de Metileno/administração & dosagem , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fatores Sexuais , Transdução de Sinais/efeitos dos fármacos , Tauopatias/patologia
10.
FASEB J ; 28(4): 1682-97, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24391134

RESUMO

Substrate-level phosphorylation mediated by succinyl-CoA ligase in the mitochondrial matrix produces high-energy phosphates in the absence of oxidative phosphorylation. Furthermore, when the electron transport chain is dysfunctional, provision of succinyl-CoA by the α-ketoglutarate dehydrogenase complex (KGDHC) is crucial for maintaining the function of succinyl-CoA ligase yielding ATP, preventing the adenine nucleotide translocase from reversing. We addressed the source of the NAD(+) supply for KGDHC under anoxic conditions and inhibition of complex I. Using pharmacologic tools and specific substrates and by examining tissues from pigeon liver exhibiting no diaphorase activity, we showed that mitochondrial diaphorases in the mouse liver contribute up to 81% to the NAD(+) pool during respiratory inhibition. Under these conditions, KGDHC's function, essential for the provision of succinyl-CoA to succinyl-CoA ligase, is supported by NAD(+) derived from diaphorases. Through this process, diaphorases contribute to the maintenance of substrate-level phosphorylation during respiratory inhibition, which is manifested in the forward operation of adenine nucleotide translocase. Finally, we show that reoxidation of the reducible substrates for the diaphorases is mediated by complex III of the respiratory chain.


Assuntos
Trifosfato de Adenosina/metabolismo , Ciclo do Ácido Cítrico , Di-Hidrolipoamida Desidrogenase/metabolismo , Mitocôndrias Hepáticas/metabolismo , NAD/metabolismo , Acil Coenzima A/metabolismo , Animais , Columbidae , Di-Hidrolipoamida Desidrogenase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hipóxia/metabolismo , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/fisiologia , Translocases Mitocondriais de ADP e ATP/metabolismo , Modelos Biológicos , Nitrilas/farmacologia , Oxirredução , Fosforilação Oxidativa , Especificidade por Substrato , Succinato-CoA Ligases/metabolismo , Desacopladores/farmacologia
11.
FASEB J ; 28(4): 1745-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24398293

RESUMO

The peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) interacts with various transcription factors involved in energy metabolism and in the regulation of mitochondrial biogenesis. PGC-1α mRNA levels are reduced in a number of neurodegenerative diseases and contribute to disease pathogenesis, since increased levels ameliorate behavioral defects and neuropathology of Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. PGC-1α and its downstream targets are reduced both in postmortem brain tissue of patients with Alzheimer's disease (AD) and in transgenic mouse models of AD. Therefore, we investigated whether increased expression of PGC-1α would exert beneficial effects in the Tg19959 transgenic mouse model of AD; Tg19959 mice express the human amyloid precursor gene (APP) with 2 familial AD mutations and develop increased ß-amyloid levels, plaque deposition, and memory deficits by 2-3 mo of age. Rather than an improvement, the cross of the Tg19959 mice with mice overexpressing human PGC-1α exacerbated amyloid and tau accumulation. This was accompanied by an impairment of proteasome activity. PGC-1α overexpression induced mitochondrial abnormalities, neuronal cell death, and an exacerbation of behavioral hyperactivity in the Tg19959 mice. These findings show that PGC-1α overexpression exacerbates the neuropathological and behavioral deficits that occur in transgenic mice with mutations in APP that are associated with human AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fatores de Transcrição/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Western Blotting , Morte Celular/genética , Morte Celular/fisiologia , Modelos Animais de Doenças , Expressão Gênica , Humanos , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Transtornos Mentais/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Mutação , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Placa Amiloide/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
12.
Hum Mol Genet ; 21(23): 5091-105, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22922230

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are ligand-mediated transcription factors, which control both lipid and energy metabolism and inflammation pathways. PPARγ agonists are effective in the treatment of metabolic diseases and, more recently, neurodegenerative diseases, in which they show promising neuroprotective effects. We studied the effects of the pan-PPAR agonist bezafibrate on tau pathology, inflammation, lipid metabolism and behavior in transgenic mice with the P301S human tau mutation, which causes familial frontotemporal lobar degeneration. Bezafibrate treatment significantly decreased tau hyperphosphorylation using AT8 staining and the number of MC1-positive neurons. Bezafibrate treatment also diminished microglial activation and expression of both inducible nitric oxide synthase and cyclooxygenase 2. Additionally, the drug differentially affected the brain and brown fat lipidome of control and P301S mice, preventing lipid vacuoles in brown fat. These effects were associated with behavioral improvement, as evidenced by reduced hyperactivity and disinhibition in the P301S mice. Bezafibrate therefore exerts neuroprotective effects in a mouse model of tauopathy, as shown by decreased tau pathology and behavioral improvement. Since bezafibrate was given to the mice before tau pathology had developed, our data suggest that bezafibrate exerts a preventive effect on both tau pathology and its behavioral consequences. Bezafibrate is therefore a promising agent for the treatment of neurodegenerative diseases associated with tau pathology.


Assuntos
Comportamento Animal/efeitos dos fármacos , Bezafibrato/farmacologia , Tauopatias/metabolismo , Proteínas tau/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Bezafibrato/administração & dosagem , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Oxirredução , Estresse Oxidativo , Fosforilação/efeitos dos fármacos , Tauopatias/tratamento farmacológico
13.
J Bioenerg Biomembr ; 46(6): 471-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25248416

RESUMO

Mitochondrial reactive oxygen species (ROS) metabolism is unique in that mitochondria both generate and scavenge ROS. Recent estimates of ROS scavenging capacity of brain mitochondria are surprisingly high, ca. 9-12 nmol H2O2/min/mg, which is ~100 times higher than the rate of ROS generation. This raises a question whether brain mitochondria are a source or a sink of ROS. We studied the interaction between ROS generation and scavenging in mouse brain mitochondria by measuring the rate of removal of H2O2 added at a concentration of 0.4 µM, which is close to the reported physiological H2O2 concentrations in tissues, under conditions of low and high levels of mitochondrial H2O2 generation. With NAD-linked substrates, the rate of H2O2 generation by mitochondria was ~50-70 pmol/min/mg. The H2O2 scavenging dynamics was best approximated by the first order reaction equation. H2O2 scavenging was not affected by the uncoupling of mitochondria, phosphorylation of added ADP, or the genetic ablation of glutathione peroxidase 1, but decreased in the absence of respiratory substrates, in the presence of thioredoxin reductase inhibitor auranofin, or in partially disrupted mitochondria. With succinate, the rate of H2O2 generation was ~2,200-2,900 pmol/min/mg; the scavenging of added H2O2 was masked by a significant accumulation of generated H2O2 in the assay medium. The obtained data were fitted into a simple model that reasonably well described the interaction between H2O2 scavenging and production. It showed that mitochondria are neither a sink nor a source of H2O2, but can function as both at the same time, efficiently stabilizing exogenous H2O2 concentration at a level directly proportional to the ratio of the H2O2 generation rate to the rate constant of the first order scavenging reaction.


Assuntos
Encéfalo/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Animais , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio
14.
FASEB J ; 27(6): 2392-406, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23475850

RESUMO

A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20-48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ~30% higher ADP-ATP exchange rates compared to those obtained from DLST(+/-) or DLD(+/-) littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on "in-house" mitochondrial ATP reserves.


Assuntos
Aciltransferases/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Di-Hidrolipoamida Desidrogenase/deficiência , Complexo Cetoglutarato Desidrogenase/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/genética , Animais , Di-Hidrolipoamida Desidrogenase/genética , Di-Hidrolipoamida Desidrogenase/metabolismo , Feminino , Complexo Cetoglutarato Desidrogenase/química , Complexo Cetoglutarato Desidrogenase/deficiência , Complexo Cetoglutarato Desidrogenase/genética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Especificidade por Substrato
15.
Brain ; 136(Pt 8): 2432-43, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23794606

RESUMO

X-linked adrenoleukodystrophy is a neurometabolic disorder caused by inactivation of the peroxisomal ABCD1 transporter of very long-chain fatty acids. In mice, ABCD1 loss causes late onset axonal degeneration in the spinal cord in association with locomotor disability resembling the most common phenotype in patients, adrenomyeloneuropathy. Increasing evidence indicates that oxidative stress and bioenergetic failure play major roles in the pathogenesis of X-linked adrenoleukodystrophy. In this study, we aimed to evaluate whether mitochondrial biogenesis is affected in X-linked adrenoleukodystrophy. We demonstrated that Abcd1 null mice show reduced mitochondrial DNA concomitant with downregulation of mitochondrial biogenesis pathway driven by PGC-1α/PPARγ and reduced expression of mitochondrial proteins cytochrome c, NDUFB8 and VDAC. Moreover, we show that the oral administration of pioglitazone, an agonist of PPARγ, restored mitochondrial content and expression of master regulators of biogenesis, neutralized oxidative damage to proteins and DNA, and reversed bioenergetic failure in terms of ATP levels, NAD+/NADH ratios, pyruvate kinase and glutathione reductase activities. Most importantly, the treatment halted locomotor disability and axonal damage in X-linked adrenoleukodystrophy mice. These results lend support to the use of pioglitazone in clinical trials with patients with adrenomyeloneuropathy and reveal novel molecular mechanisms of action of pioglitazone in neurodegeneration. Future studies should address the effects of this anti-diabetic drug on other axonopathies in which oxidative stress and mitochondrial dysfunction are contributing factors.


Assuntos
Adrenoleucodistrofia/tratamento farmacológico , Axônios/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Degeneração Neural/tratamento farmacológico , Tiazolidinedionas/uso terapêutico , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/patologia , Animais , Axônios/metabolismo , Axônios/patologia , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Glutationa Redutase/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Camundongos , Camundongos Knockout , Degeneração Neural/genética , Degeneração Neural/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Pioglitazona , Tiazolidinedionas/farmacologia , Resultado do Tratamento
16.
Mol Cell Neurosci ; 55: 13-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22820180

RESUMO

The activity of mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC) is severely reduced in human pathologies where oxidative stress is traditionally thought to play an important role, such as familial and sporadic forms of Alzheimer's disease and other age-related neurodegenerative diseases. This minireview is focused on substantial data that were accumulated over the last 2 decades to support the concept that KGDHC can be a primary mitochondrial target of oxidative stress and at the same time a key contributor to it by producing reactive oxygen species. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.


Assuntos
Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/enzimologia , Estresse Oxidativo , Animais , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
J Neurosci ; 32(9): 3235-44, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22378894

RESUMO

Oxidative stress and Ca(2+) toxicity are mechanisms of hypoxic-ischemic (HI) brain injury. This work investigates if partial inhibition of mitochondrial respiratory chain protects HI brain by limiting a generation of oxidative radicals during reperfusion. HI insult was produced in p10 mice treated with complex I (C-I) inhibitor, pyridaben, or vehicle. Administration of P significantly decreased the extent of HI injury. Mitochondria isolated from the ischemic hemisphere in pyridaben-treated animals showed reduced H(2)O(2) emission, less oxidative damage to the mitochondrial matrix, and increased tolerance to the Ca(2+)-triggered opening of the permeability transition pore. A protective effect of pyridaben administration was also observed when the reperfusion-driven oxidative stress was augmented by the exposure to 100% O(2) which exacerbated brain injury only in vehicle-treated mice. In vitro, intact brain mitochondria dramatically increased H(2)O(2) emission in response to hyperoxia, resulting in substantial loss of Ca(2+) buffering capacity. However, in the presence of the C-I inhibitor, rotenone, or the antioxidant, catalase, these effects of hyperoxia were abolished. Our data suggest that the reperfusion-driven recovery of C-I-dependent mitochondrial respiration contributes not only to the cellular survival, but also causes oxidative damage to the mitochondria, potentiating a loss of Ca(2+) buffering capacity. This highlights a novel neuroprotective strategy against HI brain injury where the major therapeutic principle is a pharmacological attenuation, rather than an enhancement of mitochondrial oxidative metabolism during early reperfusion.


Assuntos
Lesões Encefálicas/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Radicais Livres/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Lesões Encefálicas/enzimologia , Lesões Encefálicas/patologia , Complexo I de Transporte de Elétrons/fisiologia , Feminino , Radicais Livres/toxicidade , Hipóxia-Isquemia Encefálica/enzimologia , Hipóxia-Isquemia Encefálica/patologia , Masculino , Camundongos , Mitocôndrias/fisiologia , Oxigênio/toxicidade
18.
Brain ; 135(Pt 9): 2865-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22961554

RESUMO

Amyotrophic lateral sclerosis is a devastating neurodegenerative disorder that is more prevalent in males than in females. A similar gender difference has been reported in some strains of transgenic mouse models of familial amyotrophic lateral sclerosis harbouring the G93A mutation in CuZn superoxide dismutase. Mitochondrial damage caused by pathological alterations in Ca(2+) accumulation is frequently involved in neurodegenerative diseases, including CuZn superoxide dismutase-related amyotrophic lateral sclerosis, but its association with gender is not firmly established. In this study, we examined the effects of genetic ablation of cyclophilin D on gender differences in mice expressing G93A mutant CuZn superoxide dismutase. Cyclophilin D is a mitochondrial protein that promotes mitochondrial damage from accumulated Ca(2+). As anticipated, we found that cyclophilin D ablation markedly increased Ca(2+) retention in brain mitochondria of both males and females. Surprisingly, cyclophilin D ablation completely abolished the phenotypic advantage of G93A females, with no effect on disease in males. We also found that the 17ß-oestradiol decreased Ca(2+) retention in brain mitochondria, and that cyclophilin D ablation abolished this effect. Furthermore, 17ß-oestradiol protected G93A cortical neurons and spinal cord motor neurons against glutamate toxicity, but the protection was lost in neurons lacking cyclophilin D. Taken together, these results identify a novel mechanism of oestrogen-mediated neuroprotection in CuZn superoxide dismutase-related amyotrophic lateral sclerosis, whereby Ca(2+) overload and mitochondrial damage are prevented in a cyclophilin D-dependent manner. Such a protective mechanism may contribute to the lower incidence and later onset of amyotrophic lateral sclerosis, and perhaps other chronic neurodegenerative diseases, in females.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Cálcio/metabolismo , Ciclofilinas/genética , Estradiol/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Peptidil-Prolil Isomerase F , Ciclofilinas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
19.
J Neurosci ; 31(44): 15826-37, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22049426

RESUMO

Mutations in Cu,Zn superoxide dismutase (SOD1) are associated with familial amyotrophic lateral sclerosis (ALS). Mutant SOD1 causes a complex array of pathological events, through toxic gain of function mechanisms, leading to selective motor neuron degeneration. Mitochondrial dysfunction is among the well established toxic effects of mutant SOD1, but its mechanisms are just starting to be elucidated. A portion of mutant SOD1 is localized in mitochondria, where it accumulates mostly on the outer membrane and inside the intermembrane space (IMS). Evidence in cultured cells suggests that mutant SOD1 in the IMS causes mitochondrial dysfunction and compromises cell viability. Therefore, to test its pathogenic role in vivo we generated transgenic mice expressing G93A mutant or wild-type (WT) human SOD1 targeted selectively to the mitochondrial IMS (mito-SOD1). We show that mito-SOD1 is correctly localized in the IMS, where it oligomerizes and acquires enzymatic activity. Mito-G93ASOD1 mice, but not mito-WTSOD1 mice, develop a progressive disease characterized by body weight loss, muscle weakness, brain atrophy, and motor impairment, which is more severe in females. These symptoms are associated with reduced spinal motor neuron counts and impaired mitochondrial bioenergetics, characterized by decreased cytochrome oxidase activity and defective calcium handling. However, there is no evidence of muscle denervation, a cardinal pathological feature of ALS. Together, our findings indicate that mutant SOD1 in the mitochondrial IMS causes mitochondrial dysfunction and neurodegeneration, but per se it is not sufficient to cause a full-fledged ALS phenotype, which requires the participation of mutant SOD1 localized in other cellular compartments.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Encéfalo/ultraestrutura , Mitocôndrias , Mutação/genética , Medula Espinal/ultraestrutura , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Análise de Variância , Animais , Peso Corporal/genética , Encéfalo/patologia , Cálcio/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/genética , Coração , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão/métodos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/patologia , Miocárdio/patologia , Proteínas do Tecido Nervoso/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
20.
FASEB J ; 25(11): 4063-72, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21825035

RESUMO

Abnormal tau accumulation can lead to the development of neurodegenerative diseases. P301S mice overexpress the human tau mutated gene, resulting in tau hyperphosphorylation and tangle formation. Mice also develop synaptic deficits and microglial activation prior to any neurodegeneration and tangles. Oxidative stress can also affect tauopathy. We studied the role of oxidative stress in relationship to behavioral abnormalities and disease progression in P301S mice at 2, 7, and 10 mo of age. At 7 mo of age, P301S mice had behavioral abnormalities, such as hyperactivity and disinhibition. At the same age, we observed increased carbonyls in P301S mitochondria (∼215 and 55% increase, males/females), and deregulation in the activity and content of mitochondrial enzymes involved in reactive oxygen species formation and energy metabolism, such as citrate synthase (∼19 and ∼5% decrease, males/females), MnSOD (∼16% decrease, males only), cytochrome C (∼19% decrease, females only), and cytochrome C oxidase (∼20% increase, females only). These changes in mitochondria proteome appeared before tau hyperphosphorylation and tangle formation, which were observed at 10 mo and were associated with GSK3ß activation. At that age, mitochondria proteome deregulation became more apparent in male P301S mitochondria. The data strongly suggest that oxidative stress and mitochondrial abnormalities appear prior to tau pathology.


Assuntos
Comportamento Animal/fisiologia , Mitocôndrias/patologia , Estresse Oxidativo/fisiologia , Tauopatias/fisiopatologia , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Ciclo do Ácido Cítrico/fisiologia , Transporte de Elétrons/fisiologia , Comportamento Exploratório/fisiologia , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Comportamento Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA