Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Res ; 80(22): 5089-5097, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32978171

RESUMO

Scientists working in translational oncology regularly conduct multigroup studies of mice with serially measured tumors. Longitudinal data collected can feature mid-study dropouts and complex nonlinear temporal response patterns. Parametric statistical models such as ones assuming exponential growth are useful for summarizing tumor volume over ranges for which the growth model holds, with the advantage that the model's parameter estimates can be used to summarize between-group differences in tumor volume growth with statistical measures of uncertainty. However, these same assumed growth models are too rigid to recapitulate patterns observed in many experiments, which in turn diminishes the effectiveness of their parameter estimates as summary statistics. To address this problem, we generalized such models by adopting a nonparametric approach in which group-level response trends for logarithmically scaled tumor volume are estimated as regression splines in a generalized additive mixed model. We also describe a novel summary statistic for group level splines over user-defined, experimentally relevant time ranges. This statistic reduces to the log-linear growth rate for data well described by exponential growth and also has a sampling distribution across groups that is well approximated by a multivariate Gaussian, thus facilitating downstream analysis. Real-data examples show that this nonparametric approach not only enhances fidelity in describing nonlinear growth scenarios but also improves statistical power to detect interregimen differences when compared with the simple exponential model so that it generalizes the linear mixed effects paradigm for analysis of log-linear growth to nonlinear scenarios in a useful way. SIGNIFICANCE: This work generalizes the statistical linear mixed modeling paradigm for summarizing longitudinally measured preclinical tumor volume studies to encompass studies with nonlinear and nonmonotonic group response patterns in a statistically rigorous manner.


Assuntos
Tomada de Decisões , Oncologia/estatística & dados numéricos , Modelos Estatísticos , Neoplasias/patologia , Pesquisa Translacional Biomédica/estatística & dados numéricos , Carga Tumoral , Anilidas/administração & dosagem , Animais , Antineoplásicos Alquilantes/administração & dosagem , Viés , Modelos Animais de Doenças , Feminino , Genes Supressores de Tumor , Glioblastoma/tratamento farmacológico , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Distribuição Normal , Receptor Patched-1/genética , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Distribuição Aleatória , Estatísticas não Paramétricas , Temozolomida/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA