Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38242696

RESUMO

Much remains unknown about the etiology of compulsion-like alcohol drinking, where consumption persists despite adverse consequences. The role of the anterior insula (AIC) in emotion, motivation, and interoception makes this brain region a likely candidate to drive challenge-resistant behavior, including compulsive drinking. Indeed, subcortical projections from the AIC promote compulsion-like intake in rats and are recruited in heavy-drinking humans during compulsion for alcohol, highlighting the importance of and need for more information about AIC activity patterns that support aversion-resistant responding. Single-unit activity was recorded in the AIC from 15 male rats during alcohol-only and compulsion-like consumption. We found three sustained firing phenotypes, sustained-increase, sustained-decrease, and drinking-onset cells, as well as several firing patterns synchronized with licking. While many AIC neurons had session-long activity changes, only neurons with firing increases at drinking onset had greater activity under compulsion-like conditions. Further, only cells with persistent firing increases maintained activity during pauses in licking, suggesting roles in maintaining drive for alcohol during breaks. AIC firing was not elevated during saccharin drinking, similar to lack of effect of AIC inhibition on sweet fluid intake in many studies. In addition, we observed subsecond changes in AIC neural activity tightly entrained to licking. One lick-synched firing pattern (determined for all licks in a session) predicted compulsion-like drinking, while a separate lick-associated pattern correlated with greater consumption across alcohol intake conditions. Collectively, these data provide a more integrated model for the role of AIC firing in compulsion-like drinking, with important relevance for how the AIC promotes sustained motivated responding more generally.


Assuntos
Consumo de Bebidas Alcoólicas , Motivação , Humanos , Ratos , Masculino , Animais , Consumo de Bebidas Alcoólicas/psicologia , Etanol/farmacologia , Paladar , Comportamento Animal
2.
Addict Biol ; 29(3): e13387, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502109

RESUMO

Problem alcohol drinking continues to be a substantial cost and burden. In addition, alcohol consumption in women has increased in recent decades, and women can have greater alcohol problems and comorbidities. Thus, there is a significant need for novel therapeutics to enhance sex-specific, individualized treatment. Heart rate (HR) and HR variability (HRV) are of broad interest because they may be both biomarkers for and drivers of pathological states. HRV reflects the dynamic balance between sympathetic (SNS, 'fight or flight') and parasympathetic (PNS, 'rest and digest') systems. Evidence from human studies suggest PNS predominance in women and SNS in men during autonomic regulation, indicating the possibility of sex differences in risk factors and physiological drivers of problem drinking. To better understand the association between HRV sex differences and alcohol drinking, we examined whether alcohol consumption levels correlated with time domain HRV measures (SDNN and rMSSD) at baseline, at alcohol drinking onset, and across 10 min of drinking, in adult female and male Wistar rats. In particular, we compared both HRV and HR measures under alcohol-only and compulsion-like conditions (alcohol + 10 mg/L quinine), because compulsion can often be a significant barrier to treatment of alcohol misuse. Importantly, previous work supports the possibility that different HRV measures could be interpreted to reflect PNS versus SNS influences. Here, we show that females with higher putative PNS indicators at baseline and at drinking onset had greater alcohol consumption. In contrast, male intake levels related to increased potential SNS measures at drinking onset. Once alcohol was consumed, HR predicted intake level in females, perhaps a pharmacological effect of alcohol. However, HRV changes were greater during compulsion-like intake versus alcohol-only, suggesting HRV changes (reduced SNS in females, reduced PNS and increased HR in males) specifically related to aversion-resistant intake. We find novel and likely clinically relevant autonomic differences associated with biological sex and alcohol drinking, suggesting that different autonomic mechanisms may promote differing aspects of female and male alcohol consumption.


Assuntos
Alcoolismo , Caracteres Sexuais , Humanos , Adulto , Ratos , Feminino , Animais , Masculino , Frequência Cardíaca , Ratos Wistar , Consumo de Bebidas Alcoólicas , Etanol/farmacologia
3.
Addict Biol ; 25(3): e12754, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31012186

RESUMO

Waiting impulsivity is a risk factor for many psychiatric disorders including alcohol use disorder (AUD). Highly impulsive individuals are vulnerable to alcohol abuse. However, it is not well understood whether chronic alcohol use increases the propensity for impulsive behavior. Here, we establish a novel experimental paradigm demonstrating that continuous binge-like ethanol exposure progressively leads to maladaptive impulsive behavior. To test waiting impulsivity, we employed the 5-choice serial reaction time task (5-CSRTT) in C57BL/6J male mice. We assessed premature responses in the fixed and variable intertrial interval (ITI) 5-CSRTT sessions. We further characterized our ethanol-induced impulsive mice using Open Field, y-maze, two-bottle choice, and an action-outcome task. Our results indicate that continuous binge-like ethanol exposure significantly increased premature responses when mice were tested in variable ITI sessions even during a prolonged abstinent period. Ethanol-induced impulsive mice exhibited anxiety-like behavior during chronic exposures. This behavior was also observed in a separate cohort that was subjected to 20 days of abstinence. Ethanol-treated mice were less motivated for a sucrose reward compared with air-exposed control mice, while also demonstrating reduced responding during action-outcome testing. Overall, ethanol-treated mice demonstrated increased impulsive behavior, but a reduced motivation for a sucrose reward. Although waiting impulsivity has been hypothesized to be a trait or risk factor for AUD, our findings indicate that maladaptive impulse control can also be potentiated or induced by continuous chronic ethanol exposure in mice.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Comportamento Impulsivo/efeitos dos fármacos , Animais , Ansiedade , Comportamento Animal/efeitos dos fármacos , Consumo Excessivo de Bebidas Alcoólicas , Comportamento de Escolha/efeitos dos fármacos , Masculino , Camundongos , Motivação/efeitos dos fármacos , Teste de Campo Aberto , Tempo de Reação/efeitos dos fármacos , Recompensa
4.
J Proteome Res ; 18(9): 3492-3502, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31329447

RESUMO

Chronic binge alcohol drinking is known to increase risky decision through pathological impulsive behaviors. Recently, we established a novel rodent model of ethanol-induced waiting impulsivity using 5-choice serial reaction time task (5-CSRTT) in mice. However, molecular mechanisms underlying the chronic binge ethanol-induced waiting impulsivity is not well characterized. Among brain regions involved in impulsivity, the anterior cingulate cortex (ACC) is a major neural substrate for mediating the 5-CSRTT-based waiting impulsivity. Thus, we sought to determine the ACC proteomic profile using label-free proteomics of mice exhibiting ethanol-induced impulsivity. Ingenuity pathway analysis revealed that impulsivity-related proteins involved in ion channel complexes such as KCNIP3 (potassium voltage-gated channel interacting protein 3) and CACNG2 (calcium voltage-gated channel auxiliary subunit gamma 2) are downregulated in the ACC. We identified significant protein expression changes in the mechanistic target of rapamycin (mTOR) canonical pathway between control and ethanol-induced impulsive mice. Impulsive mice showed over 60% of proteins involved in the mTOR canonical pathway have been altered. This pathway has been previously implicated in the neuroadaptation in drugs of abuse and impulsivity. We found substantial changes in the protein levels involved in neurological disorders such as schizophrenia and Alzheimer's disease. Our findings provide a neuroproteomic profile of ethanol-induced impulsive mice.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Canais de Cálcio/genética , Proteínas Interatuantes com Canais de Kv/genética , Proteômica , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Cognição/efeitos dos fármacos , Etanol/toxicidade , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/patologia , Humanos , Comportamento Impulsivo/efeitos dos fármacos , Camundongos , Tempo de Reação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
5.
J Proteome Res ; 16(4): 1445-1459, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27998058

RESUMO

The neural circuit of the dorsal hippocampus (dHip) and nucleus accumbens (NAc) contributes to cue-induced learning and addictive behaviors, as demonstrated by the escalation of ethanol-seeking behaviors observed following deletion of the adenosine equilibrative nucleoside transporter 1 (ENT1-/-) in mice. Here we perform quantitative LC-MS/MS neuroproteomics in the dHip and NAc of ENT1-/- mice. Using Ingenuity Pathway Analysis, we identified proteins associated with increased long-term potentiation, ARP2/3-mediated actin cytoskeleton signaling and protein expression patterns suggesting deficits in glutamate degradation, GABAergic signaling, as well as significant changes in bioenergetics and energy homeostasis (oxidative phosphorylation, TCA cycle, and glycolysis). These pathways are consistent with previously reported behavioral and biochemical phenotypes that typify mice lacking ENT1. Moreover, we validated decreased expression of the SNARE complex protein VAMP1 (synaptobrevin-1) in the dHip as well as decreased expression of pro-dynorphin (PDYN), neuroendocrine convertase (PCSK1), and Leu-Enkephalin (dynorphin-A) in the NAc. Taken together, our proteomic approach provides novel pathways indicating that ENT1-regulated signaling is essential for neurotransmitter release and neuropeptide processing, both of which underlie learning and reward-seeking behaviors.


Assuntos
Encefalinas/genética , Transportador Equilibrativo 1 de Nucleosídeo/genética , Pró-Proteína Convertase 1/genética , Precursores de Proteínas/genética , Proteômica , Proteína 1 Associada à Membrana da Vesícula/genética , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/patologia , Animais , Etanol/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Potenciação de Longa Duração/genética , Camundongos , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Neurotransmissores/biossíntese , Neurotransmissores/genética , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Transdução de Sinais/genética , Espectrometria de Massas em Tandem
6.
Glia ; 65(12): 2070-2086, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28921694

RESUMO

Oligodendrocytes are essential regulators of axonal energy homeostasis and electrical conduction and emerging target cells for restoration of neurological function. Here we investigate the role of protease activated receptor 2 (PAR2), a unique protease activated G protein-coupled receptor, in myelin development and repair using the spinal cord as a model. Results demonstrate that genetic deletion of PAR2 accelerates myelin production, including higher proteolipid protein (PLP) levels in the spinal cord at birth and higher levels of myelin basic protein and thickened myelin sheaths in adulthood. Enhancements in spinal cord myelin with PAR2 loss-of-function were accompanied by increased numbers of Olig2- and CC1-positive oligodendrocytes, as well as in levels of cyclic adenosine monophosphate (cAMP), and extracellular signal related kinase 1/2 (ERK1/2) signaling. Parallel promyelinating effects were observed after blocking PAR2 expression in purified oligodendrocyte cultures, whereas inhibiting adenylate cyclase reversed these effects. Conversely, PAR2 activation reduced PLP expression and this effect was prevented by brain derived neurotrophic factor (BDNF), a promyelinating growth factor that signals through cAMP. PAR2 knockout mice also showed improved myelin resiliency after traumatic spinal cord injury and an accelerated pattern of myelin regeneration after focal demyelination. These findings suggest that PAR2 is an important controller of myelin production and regeneration, both in the developing and adult spinal cord.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Bainha de Mielina/fisiologia , Receptor PAR-2/metabolismo , Traumatismos da Medula Espinal , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Proteínas Relacionadas à Autofagia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , AMP Cíclico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Transgênicos , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Oligodendroglia/metabolismo , Receptor PAR-2/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
7.
Alcohol ; 115: 79-92, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38286210

RESUMO

Excessive intake plays a significant role in the development of alcohol use disorder and impacts 15 million Americans annually, with approximately 88 000 dying from alcohol related deaths. Several facets we contribute to alcohol use disorder include impulsivity, motivation, and attention. Previous studies have used the 5-Choice Serial Reaction Time Task (5-Choice) to analyze these types of behaviors using sugar, but recently we have published using 10% alcohol as the reward. This study analyzed 48 mice that were trained to respond for alcohol in the 5-Choice. All mice distributed and analyzed first by alcohol preference and then by consumption. Here, we became interested in a new classification called "engagement". High-engaged and low-engaged mice were determined by the number of correct responses during final Late-Stage training sessions. Interestingly, during Early-Stage training, the mice began to separate themselves into two groups based on their interaction with the task. Throughout both training stages, high-engaged mice displayed a greater number of trials and correct responses, as well as a lower percentage of omissions compared to low-engaged mice. Following three weeks of intermittent access homecage drinking, low-engaged mice showed greater increase in perseverative responding relative to high-engaged. Additionally, low-engaged mice decreased their reward and correct latencies compared to high-engaged mice suggesting an increase in motivation for alcohol. Overall, engagement analysis presents two clearly different groups, with only one being motivated to work for alcohol. These two distinct phenotypes in the 5-Choice could be used to model alcohol motivated behavior, which could help us further understand alcohol use disorder.


Assuntos
Alcoolismo , Humanos , Camundongos , Animais , Tempo de Reação , Etanol , Consumo de Bebidas Alcoólicas/genética , Atenção
8.
Alcohol ; 120: 41-50, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906390

RESUMO

Problem alcohol drinking remains a major cost and burden for society. Also, rates of problem drinking in women have dramatically increased in recent decades, and women are at risk for more alcohol problems and comorbidities. The purpose of this commentary is to discuss the potential utility of cardiac measures, including heart rate (HR) and HR variability (HRV), as markers of individual and sex differences in the drive to drink alcohol. We recently used cardiac telemetry in female and male adult rats to determine whether different cardiac markers, including HR and HRV, would differently predict alcohol and anxiety-like behavior across the sexes. Indeed, female behaviors related to HRV measures that indicate more parasympathetic (PNS) influence (the "rest and digest" system). In contrast, male behaviors are associated more with sympathetic (SNS) indicators (the activation system). Remarkably, similar sex differences in PNS versus SNS engagement under challenge are seen in several human studies, suggesting strong cross-species convergence in differential autonomic regulation in females and males. Here, we describe the larger challenges that alcohol addiction presents, and how HRV measures may provide new biomarkers to help enhance development of more individualized and sex-specific treatments. We briefly explain the physiological systems underlying cardiac PNS and SNS states, and how specific HRV metrics are defined and validated, especially why particular HRV measures are considered to reflect more PNS versus SNS influence. Finally, we describe hormonal influences and sex differences in brain circuits related to cardiac autonomic regulation. Together, these findings show that HR and HRV have potential for uncovering key underlying mechanisms of sex and individual differences in autonomic drivers, which could guide more personalized treatment.

9.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077076

RESUMO

Uncontrollable binge drinking is becoming an increasingly prevalent issue in our society. This is a factor that plays a role in the development of alcohol use disorder (AUD). AUD impacts 15 million Americans annually, with approximately 88,000 dying from alcohol related deaths. There are several aspects of AUD that encourage a strong dependence on alcohol. Impulsivity, motivation, and attention are the primary behavioral facets we contribute to AUD. Many past studies have used the 5-Choice Serial Reaction Time Task (5-Choice) to analyze these types of behaviors using sugar as the reward. We have recently published a study where alcohol was used as a reward in the 5-Choice. 48 mice were trained to respond for alcohol in the 5-Choice, and the analyses for these animals were originally categorized by their alcohol preference and consumption. Upon looking at the data, we became more interested in a new way to classify these mice into groups. High engaged (HE) and low engaged (LE) mice were classified based on their number of correct responses in the last five late-stage sessions. During early-stage training, mice began to separate themselves into two groups based on their interaction with the task. The high-engaged (HE) mice were much more engaged with the task by having a high number of trials and correct responses, as well as a much lower percentage of omissions. The low engaged (LE) mice were not as engaged, this was apparent because of their lower number of trials and correct responses. They also had a much higher percentage of omissions in comparison to HE mice. LE mice presented no significant changes in late-stage training, while HE mice began responding and engaging more. These mice went through a period of intermittent access (IA), where they were allowed to drink alcohol in their cage for 3 weeks. After intermittent access, LE mice increased their responding which suggests an increase in motivation for alcohol as a reward. Engagement analysis presents two clearly different groups, one being motivated to work for alcohol and the other not wanting to work for this reward. These two distinct phenotypes in the 5-Choice could be used to model alcohol motivated behavior, which could help us further understand AUD.

10.
Addict Neurosci ; 72023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38736902

RESUMO

Alcohol use disorder extracts substantial personal, social and clinical costs, and continued intake despite negative consequences (compulsion-like consumption) can contribute strongly. Here we discuss lickometry, a simple method where lick times are determined across a session, while analysis across many aspects of licking can offer important insights into underlying psychological and action strategies, including their brain mechanisms. We first describe studies implicating anterior insula (AIC) and dorsal medial prefrontal cortex (dMPF) in compulsion-like responding for alcohol, then review work suggesting that AIC/ventral frontal cortex versus dMPF regulate different aspects of behavior (oral control and overall response strategy, versus moment-to-moment action organization). We then detail our lickometer work comparing alcohol-only drinking (AOD) and compulsion-like drinking under moderate- or higher-challenge (ModChD or HiChD, using quinine-alcohol). Many studies have suggested utilization of one of two main strategies, with higher motivation indicated by more bouts, and greater palatability suggested by longer, faster bouts. Instead, ModChD shows decreased variability in many lick measures, which is unexpected but consistent with the suggested importance of automaticity for addiction. Also surprising is that HiChD retains several behavior changes seen with ModChD, reduced tongue variability and earlier bout start, even though intake is otherwise disrupted. Since AIC-related measures are retained under both moderate- and higher-challenge, we propose a novel hypothesis that AIC sustains overall commitment regardless of challenge level, while disordered licking during HiChD mirrors the effects of dMPF inhibition. Thus, while AIC provides overall drive despite challenge, the ability to act is ultimately determined within the dMPF.

11.
Front Psychiatry ; 14: 1244389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025424

RESUMO

Introduction: Mental health conditions remain a substantial and costly challenge to society, especially in women since they have nearly twice the prevalence of anxiety disorders. However, critical mechanisms underlying sex differences remain incompletely understood. Measures of cardiac function, including heart rate (HR) and HR variability (HRV), reflect balance between sympathetic (SNS) and parasympathetic (PNS) systems and are potential biomarkers for pathological states. Methods: To better understand sex differences in anxiety-related autonomic mechanisms, we examined HR/HRV telemetry in food-restricted adult rats during novelty suppression of feeding (NSF), with conflict between food under bright light in the arena center. To assess HRV, we calculated the SDNN (reflective of both SNS and PNS contribution) and rMSSD (reflective of PNS contribution) and compared these metrics to behaviors within the anxiety task. Results: Females had greater HR and lower SNS indicators at baseline, as in humans. Further, females (but not males) with higher basal HR carried this state into NSF, delaying first approach to center. In contrast, males with lower SNS measures approached and spent more time in the brightly-lit center. Further, females with lower SNS indicators consumed significantly more food. In males, a high-SNS subpopulation consumed no food. Among consumers, males with greater SNS ate more food. Discussion: Together, these are congruent with human findings suggesting women engage PNS more, and men SNS more. Our previous behavior-only work also observed female differences from males during initial movement and food intake. Thus, high basal SNS in females reduced behavior early in NSF, while subsequent reduced SNS allowed greater food intake. In males, lower SNS increased engagement with arena center, but greater SNS predicted higher consumption. Our findings show novel and likely clinically relevant sex differences in HRV-behavior relationships.

12.
Front Behav Neurosci ; 16: 968359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187376

RESUMO

Alcohol use disorder (AUD) is related to excessive binge alcohol consumption, and there is considerable interest in associated factors that promote intake. AUD has many behavioral facets that enhance inflexibility toward alcohol consumption, including impulsivity, motivation, and attention. Thus, it is important to understand how these factors might promote responding for alcohol and can change after protracted alcohol intake. Previous studies have explored such behavioral factors using responding for sugar in the 5-Choice Serial Reaction Time Task (5-CSRTT), which allows careful separation of impulsivity, attention, and motivation. Importantly, our studies uniquely focus on using alcohol as the reward throughout training and testing sessions, which is critical for beginning to answer central questions relating to behavioral engagement for alcohol. Alcohol preference and consumption in male C57BL/6 mice were determined from the first 9 sessions of 2-h alcohol drinking which were interspersed among 5-CSRTT training. Interestingly, alcohol preference but not consumption level significantly predicted 5-CSRTT responding for alcohol. In contrast, responding for strawberry milk was not related to alcohol preference. Moreover, high-preference (HP) mice made more correct alcohol-directed responses than low-preference (LP) during the first half of each session and had more longer reward latencies in the second half, with no differences when performing for strawberry milk, suggesting that HP motivation for alcohol may reflect "front-loading." Mice were then exposed to an Intermittent Access to alcohol paradigm and retested in 5-CSRTT. While both HP and LP mice increased 5-CSRTT responding for alcohol, but not strawberry milk, LP performance rose to HP levels, with a greater change in correct and premature responding in LP versus HP. Overall, this study provides three significant findings: (1) alcohol was a suitable reward in the 5-CSRTT, allowing dissection of impulsivity, attention, and motivation in relation to alcohol drinking, (2) alcohol preference was a more sensitive indicator of mouse 5-CSRTT performance than consumption, and (3) intermittent alcohol drinking promoted behavioral engagement with alcohol, especially for individuals with less initial engagement.

13.
Front Neurosci ; 14: 561173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192248

RESUMO

Alcohol use disorder (AUD) is characterized as a chronic, relapsing disease with a pattern of excessive drinking despite negative consequences to an individual's life. Severe chronic alcohol use impairs the function of the medial prefrontal cortex (mPFC), which contributes to alcohol-induced cognitive and executive dysfunction. The mPFC contains more mitochondria compared to other cortical areas, which suggests mitochondrial damage may occur in AUD and trigger subsequent behavior change. Here, we identified morphological and functional changes in mitochondria in the mPFC in C57BL6/J mice after 8 h of withdrawal from chronic intermittent alcohol (CIA) exposure. Three-dimensional serial block-face scanning electron microscopy (SBFSEM) reconstruction revealed that CIA exposure elongated mPFC mitochondria and formed mitochondria-on-a-string (MOAS). Furthermore, alcohol significantly affected mitochondrial bioenergetics, including oxidative phosphorylation and electron transport, with inhibited aerobic respiration in mPFC mitochondria after CIA exposure. We also found decreased expression of fusion (mitofusin 2, Mfn2) and increased fission (mitochondrial fission 1 protein, Fis1) proteins in the mPFC of alcohol-treated mice. In sum, our study suggests that CIA exposure impairs mitochondrial dynamics and function in the mPFC.

14.
Int J Tryptophan Res ; 12: 1178646919891169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31896932

RESUMO

Kynurenic acid (KYNA), a glial-derived metabolite of tryptophan metabolism, is an antagonist of the alpha 7 nicotinic acetylcholine receptor and the glycine-binding site of N-methyl-d-aspartate (NMDA) receptors. Kynurenic acid levels are increased in both the brain and cerebrospinal fluid of several psychiatric disorders including bipolar disorder, schizophrenia, and Alzheimer disease. In addition, pro-inflammatory cytokines have been found to be elevated in the blood of schizophrenic patients suggesting inflammation may play a role in psychiatric illness. As both pro-inflammatory cytokines and KYNA can be elevated in the brain by peripheral lipopolysaccharide (LPS) injection, we therefore sought to characterize the role of neuroinflammation on learning and memory using a well-described dual-LPS injection model. Mice were injected with an initial injection (0.25 mg/kg LPS, 0.50 mg/kg, or saline) of LPS and then administrated a second injection 16 hours later. Our results indicate both 0.25 and 0.50 mg/kg dual-LPS treatment increased l-kynurenine and KYNA levels in the medial pre-frontal cortex (mPFC). Mice exhibited impaired acquisition of CS+ (conditioned stimulus) Pavlovian conditioning. Notably, mice showed impairment in reference memory while working memory was normal in an 8-arm maze. Taken together, our findings suggest that neuroinflammation induced by peripheral LPS administration contributes to cognitive dysfunction.

15.
Neurosci Lett ; 706: 169-175, 2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31116969

RESUMO

Impulsivity is defined as a predisposition toward rapid, unplanned reactions in response to internal or external stimuli, often yielding negative consequences. Accordingly, impulsivity is considered a significant risk factor for developing addictive behaviors. The hippocampus is involved in regulating behavioral adaptability and learned behaviors. Consequently, abnormal hippocampal function has been demonstrated to contribute to impulsive and addictive behaviors. Furthermore, differential reinforcement of low rates of behavior (DRL) has shown that the hippocampus is implicated in reward acquisition and impulsivity in humans and rodent models. We have previously shown that impulsive behavior potentiates hippocampal neuroblast proliferation. However, the fate of these precursor cells produced during impulsive reward seeking remains unknown. Here, we demonstrate that DRL-mediated impulsive reward seeking with the 2-choice reaction time task (2-CRTT) increases the number of BrdU labeled cells in the dentate gyrus region of the hippocampus. Importantly, our results also show a significant increase in BrdU+ and NeuN+ colocalized mature newborn neurons in mice exhibiting impulsivity compared to non-impulsive control mice. These results suggest that operant reward seeking during unpredictable schedules of reinforcement contributes to adult hippocampal neurogenesis.


Assuntos
Hipocampo/fisiologia , Comportamento Impulsivo/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Comportamento Animal/fisiologia , Proliferação de Células/fisiologia , Comportamento de Escolha/fisiologia , Condicionamento Operante/fisiologia , Hipocampo/citologia , Masculino , Camundongos , Neurônios/citologia , Tempo de Reação/fisiologia , Recompensa
16.
Sci Rep ; 7(1): 17052, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213116

RESUMO

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

17.
Sci Rep ; 7(1): 1311, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465556

RESUMO

The random nature of seizures poses difficult challenges for epilepsy research. There is great need for a reliable method to control the pathway to seizure onset, which would allow investigation of the mechanisms of ictogenesis and optimization of treatments. Our hypothesis is that increased random afferent synaptic activity (i.e. synaptic noise) within the epileptic focus is one endogenous method of ictogenesis. Building upon previous theoretical and in vitro work showing that synaptic noise can induce seizures, we developed a novel in vivo model of ictogenesis. By increasing the excitability of afferent connections to the hippocampus, we control the risk of temporal lobe seizures during a specific time period. The afferent synaptic activity in the hippocampus was modulated by focal microinjections of potassium chloride into the nucleus reuniens, during which the risk of seizure occurrence increased substantially. The induced seizures were qualitatively and quantitatively indistinguishable from spontaneous ones. This model thus allows direct control of the temporal lobe seizure threshold via endogenous pathways, providing a novel tool in which to investigate the mechanisms and biomarkers of ictogenesis, test for seizure threshold, and rapidly tune antiseizure treatments.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Convulsões/fisiopatologia , Sinapses/efeitos dos fármacos , Lobo Temporal/fisiopatologia , Animais , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Humanos , Núcleos da Linha Média do Tálamo/efeitos dos fármacos , Núcleos da Linha Média do Tálamo/fisiopatologia , Cloreto de Potássio/administração & dosagem , Cloreto de Potássio/toxicidade , Ratos , Convulsões/induzido quimicamente , Sinapses/fisiologia
18.
Stem Cells Transl Med ; 3(5): 620-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24657963

RESUMO

Induced pluripotent stem cells (iPSCs) show considerable promise for cell replacement therapies for Huntington's disease (HD). Our laboratory has demonstrated that tail-tip fibroblasts, reprogrammed into iPSCs via two adenoviruses, can survive and differentiate into neuronal lineages following transplantation into healthy adult rats. However, the ability of these cells to survive, differentiate, and restore function in a damaged brain is unknown. To this end, adult rats received a regimen of 3-nitropropionic acid (3-NP) to induce behavioral and neuropathological deficits that resemble HD. At 7, 21, and 42 days after the initiation of 3-NP or vehicle, the rats received intrastriatal bilateral transplantation of iPSCs. All rats that received 3-NP and vehicle treatment displayed significant motor impairment, whereas those that received iPSC transplantation after 3-NP treatment had preserved motor function. Histological analysis of the brains of these rats revealed significant decreases in optical densitometric measures in the striatum, lateral ventricle enlargement, as well as an increase in striosome size in all rats receiving 3-NP when compared with sham rats. The 3-NP-treated rats given transplants of iPSCs in the 7- or 21-day groups did not exhibit these deficits. Transplantation of iPSCs at the late-stage (42-day) time point did not protect against the 3-NP-induced neuropathology, despite preserving motor function. Transplanted iPSCs were found to survive and differentiate into region-specific neurons in the striatum of 3-NP rats, at all transplantation time points. Taken together, these results suggest that transplantation of adenovirus-generated iPSCs may provide a potential avenue for therapeutic treatment of HD.


Assuntos
Adenoviridae , Corpo Estriado , Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Transplante de Células-Tronco , Transdução Genética , Animais , Comportamento Animal , Convulsivantes/efeitos adversos , Convulsivantes/farmacologia , Modelos Animais de Doenças , Feminino , Doença de Huntington/induzido quimicamente , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Doença de Huntington/terapia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Masculino , Nitrocompostos/efeitos adversos , Nitrocompostos/farmacologia , Propionatos/efeitos adversos , Propionatos/farmacologia , Ratos , Ratos Sprague-Dawley
19.
Cell Transplant ; 23(11): 1407-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23879897

RESUMO

Induced pluripotent stem cells (iPSCs) offer certain advantages over embryonic stem cells in cell replacement therapy for a variety of neurological disorders. However, reliable procedures, whereby transplanted iPSCs can survive and differentiate into functional neurons, without forming tumors, have yet to be devised. Currently, retroviral or lentiviral reprogramming methods are often used to reprogram somatic cells. Although the use of these viruses has proven to be effective, formation of tumors often results following in vivo transplantation, possibly due to the integration of the reprogramming genes. The goal of the current study was to develop a new approach, using an adenovirus for reprogramming cells, characterize the iPSCs in vitro, and test their safety, survivability, and ability to differentiate into region-appropriate neurons following transplantation into the rat brain. To this end, iPSCs were derived from bone marrow-derived mesenchymal stem cells and tail-tip fibroblasts using a single cassette lentivirus or a combination of adenoviruses. The reprogramming efficiency and levels of pluripotency were compared using immunocytochemistry, flow cytometry, and real-time polymerase chain reaction. Our data indicate that adenovirus-generated iPSCs from tail-tip fibroblasts are as efficient as the method we used for lentiviral reprogramming. All generated iPSCs were also capable of differentiating into neuronal-like cells in vitro. To test the in vivo survivability and the ability to differentiate into region-specific neurons in the absence of tumor formation, 400,000 of the iPSCs derived from tail-tip fibroblasts that were transfected with the adenovirus pair were transplanted into the striatum of adult, immune-competent rats. We observed that these iPSCs produced region-specific neuronal phenotypes, in the absence of tumor formation, at 90 days posttransplantation. These results suggest that adenovirus-generated iPSCs may provide a safe and viable means for neuronal replacement therapies.


Assuntos
Adenoviridae/fisiologia , Reprogramação Celular/fisiologia , Corpo Estriado/cirurgia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/virologia , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Corpo Estriado/citologia , Masculino , Ratos , Ratos Sprague-Dawley , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA