Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Anaesth ; 130(3): 248-250, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682935

RESUMO

Perioperative organ injury is a frequent and major complication for the ∼240 million people undergoing surgery worldwide annually. Ischaemic preconditioning is a powerful technique that reduces organ injury in experimental models of heart, lung, gut, brain, and kidney ischaemia-reperfusion injury. However, ischaemic preconditioning has been a challenge to translate into clinical practice. We describe how utilising isolated pre-conditioned exosomes (secreted vesicles containing many cell-survival mediators), some of the translational hurdles of ischaemic preconditioning can be overcome. Delivery of exosomes in the perioperative period could become a promising new therapeutic strategy to prevent perioperative organ injury.


Assuntos
Exossomos , Precondicionamento Isquêmico Miocárdico , Precondicionamento Isquêmico , Traumatismo por Reperfusão , Humanos , Traumatismo por Reperfusão/prevenção & controle , Precondicionamento Isquêmico/métodos , Rim , Precondicionamento Isquêmico Miocárdico/métodos
2.
Neurochem Res ; 47(12): 3682-3696, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35951202

RESUMO

Ischemic stroke remains a devastating cerebrovascular disease that accounts for a high proportion of mortality and disability worldwide. MicroRNAs (miRNAs) are a class of small non-coding RNAs that are responsible for regulation of post-transcriptional gene expression, and growing evidence supports a role for miRNAs in stroke injury and recovery. The current study examined the role of miR-182 in experimental stroke using both in vitro and in vivo models of ischemic injury. Brain levels of miR-182 significantly increased after transient middle cerebral artery occlusion (MCAO) in mice and in primary astrocyte cultures subjected to combined oxygen-glucose deprivation/reperfusion (OGD/R) injury. In vivo, stroke volume and neurological score were significantly improved by pre-treatment with miR-182 antagomir. Astrocyte cultures stressed with OGD/R resulted in mitochondrial fragmentation and downregulation of cortactin, an actin-binding protein. Inhibition of miR-182 significantly preserved cortactin expression, reduced mitochondrial fragmentation and improved astrocyte survival after OGD/R. In parallel, lipopolysaccharide (LPS)-induced nitric-oxide release in astrocyte cultures was significantly reduced by miR-182 inhibition, translating to reduced injury in primary neuronal cultures subjected to conditioned medium from LPS-treated astrocytes. These findings identify miR-182 and/or cortactin as potential clinical targets to preserve mitochondrial structure and mitigate neuroinflammation and cell death after ischemic stroke.


Assuntos
Isquemia Encefálica , MicroRNAs , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Camundongos , Apoptose/genética , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Cortactina/metabolismo , Glucose , Inflamação/prevenção & controle , Inflamação/genética , AVC Isquêmico , Lipopolissacarídeos , MicroRNAs/metabolismo , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/prevenção & controle , Acidente Vascular Cerebral/genética
3.
J Transl Med ; 19(1): 202, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975607

RESUMO

The gut-brain-microbiota axis (GBMAx) coordinates bidirectional communication between the gut and brain, and is increasingly recognized as playing a central role in physiology and disease. MicroRNAs are important intracellular components secreted by extracellular vesicles (EVs), which act as vital mediators of intercellular and interspecies communication. This review will present current advances in EV-derived microRNAs and their potential functional link with GBMAx. We propose that EV-derived microRNAs comprise a novel regulatory system for GBMAx, and a potential novel therapeutic target for modifying GBMAx in clinical therapy.


Assuntos
Exossomos , Vesículas Extracelulares , Microbioma Gastrointestinal , MicroRNAs , Encéfalo , Comunicação , Microbioma Gastrointestinal/genética , MicroRNAs/genética
4.
Mol Cell Neurosci ; 98: 164-178, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31128240

RESUMO

Transient forebrain ischemia, as occurs with cardiac arrest and resuscitation, results in impaired cognitive function secondary to delayed neuronal cell death in hippocampal cornu ammonis-1 (CA1). Comparatively, hippocampal neurons in the adjacent dentate gyrus (DG) survive, suggesting that elucidating the molecular mechanisms underpinning hippocampal sub-regional differences in ischemic tolerance could be central in the development of novel interventions to improve outcome in survivors of forebrain ischemia. MicroRNAs (miRNAs) are non-coding RNAs that modulate the translation of target genes and have been established as an effective therapeutic target for other models of injury. The objective of the present study was to assess and compare post-injury miRNA profiles between CA1 and DG using a rat model of forebrain ischemia. CA1 and DG sub-regions were dissected from rat hippocampi following 10 min of forebrain ischemia at three time points (3 h, 24 h, and 72 h) and at baseline. Pronounced differences between CA1 and DG were observed for several select miRNAs, including miR-181a-5p, a known regulator of cerebral ischemic injury. We complexed fluorescent in situ hybridization with immunohistochemistry to observe cell-type specific and temporal differences in mir-181a-5p expression between CA1 and DG in response to injury. Using established miRNA-mRNA prediction algorithms, we extended our observations in CA1 miRNA dysregulation to identify key functional pathways as potential modulators of CA1 ischemic vulnerability. In summary, our observations support a central role for miRNAs in selective CA1 ischemic vulnerability and suggest that cell-specific miRNA targeting could be a viable clinical approach to preserve CA1 neurons and improve cognitive outcomes for survivors of transient forebrain ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/metabolismo , Giro Denteado/metabolismo , MicroRNAs/genética , Prosencéfalo/patologia , Animais , Isquemia Encefálica/genética , Masculino , MicroRNAs/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Mol Cancer ; 17(1): 32, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29448937

RESUMO

Intratumor heterogeneity of tumor clones and an immunosuppressive microenvironment in cancer ecosystems contribute to inherent difficulties for tumor treatment. Recently, chimeric antigen receptor (CAR) T-cell therapy has been successfully applied in the treatment of B-cell malignancies, underscoring its great potential in antitumor therapy. However, functional challenges of CAR-T cell therapy, especially in solid tumors, remain. Here, we describe cancer-immunity phenotypes from a clonal-stromal-immune perspective and elucidate mechanisms of T-cell exhaustion that contribute to tumor immune evasion. Then we assess the functional challenges of CAR-T cell therapy, including cell trafficking and infiltration, targeted-recognition and killing of tumor cells, T-cell proliferation and persistence, immunosuppressive microenvironment and self-control regulation. Finally, we delineate tumor precision informatics and advancements in engineered CAR-T cells to counteract inherent challenges of the CAR-T cell therapy, either alone or in combination with traditional therapeutics, and highlight the therapeutic potential of this approach in future tumor precision treatment.


Assuntos
Engenharia Genética , Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Edição de Genes , Engenharia Genética/métodos , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/genética , Neoplasias/metabolismo , Fenótipo , Medicina de Precisão , Receptores de Antígenos Quiméricos/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Microambiente Tumoral
6.
J Neuroinflammation ; 15(1): 339, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30537997

RESUMO

Emerging evidence suggests that gut-brain-microbiota axis (GBMAx) may play a pivotal role linking gastrointestinal and neuronal disease. In this review, we summarize the latest advances in studies of GBMAx in inflammatory bowel disease (IBD) and ischemic stroke. A more thorough understanding of the GBMAx could advance our knowledge about the pathophysiology of IBD and ischemic stroke and help to identify novel therapeutic targets via modulation of the GBMAx.


Assuntos
Isquemia Encefálica/microbiologia , Isquemia Encefálica/fisiopatologia , Microbioma Gastrointestinal/fisiologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/fisiopatologia , Animais , Humanos
7.
Mol Cell Neurosci ; 82: 118-125, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28522364

RESUMO

Whether the effect of miR-181a is sexually dimorphic in stroke is unknown. Prior work showed protection of male mice with miR-181a inhibition. Estrogen receptor-α (ERα) is an identified target of miR181 in endometrium. Therefore we investigated the separate and joint effects of miR-181a inhibition and 17ß-estradiol (E2) replacement after ovariectomy. Adult female mice were ovariectomized and implanted with an E2- or vehicle-containing capsule for 14d prior to 1h middle cerebral artery occlusion (MCAO). Each group received either miR-181a antagomir or mismatch control by intracerebroventricular injection 24h before MCAO. After MCAO neurologic deficit and infarct volume were assessed. Primary male and female astrocyte cultures were subjected to glucose deprivation with miR-181a inhibitor or transfection control, and E2 or vehicle control, with/without ESRα knockdown with small interfering RNA. Cell death was assessed by propidium iodide staining, and lactate dehydrogenase assay. A miR-181a/ERα target site blocker (TSB), with/without miR-181a mimic, was used to confirm targeting of ERα by miR-181a in astrocytes. Individually, miR-181a inhibition or E2 decreased infarct volume and improved neurologic score in female mice, and protected male and female astrocyte cultures. Combined miR-181a inhibition plus E2 afforded greater protection of female mice and female astrocyte cultures, but not in male astrocyte cultures. MiR-181a inhibition only increased ERα levels in vivo and in female cultures, while ERα knockdown with siRNA increased cell death in both sexes. Treatment with ERα TSB was strongly protective in both sexes. In conclusion, the results of the present study suggest miR-181a inhibition enhances E2-mediated stroke protection in females in part by augmenting ERα production, a mechanism detected in female mice and female astrocytes. Sex differences were observed with combined miR-181a inhibition/E2 treatment, and miR-181a targeting of ERα.


Assuntos
Astrócitos/metabolismo , Isquemia Encefálica/genética , Receptor alfa de Estrogênio/genética , Ataque Isquêmico Transitório/metabolismo , MicroRNAs/genética , Animais , Astrócitos/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Feminino , Ataque Isquêmico Transitório/genética , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Fatores Sexuais
8.
Stroke ; 46(2): 551-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25604249

RESUMO

BACKGROUND AND PURPOSE: MicroRNA (miR)-200c increases rapidly in the brain after transient cerebral ischemia but its role in poststroke brain injury is unclear. Reelin, a regulator of neuronal migration and synaptogenesis, is a predicted target of miR-200c. We hypothesized that miR-200c contributes to injury from transient cerebral ischemia by targeting reelin. METHODS: Brain infarct volume, neurological score and levels of miR-200c, reelin mRNA, and reelin protein were assessed in mice subjected to 1 hour of middle cerebral artery occlusion with or without intracerebroventricular infusion of miR-200c antagomir, mimic, or mismatch control. Direct targeting of reelin by miR-200c was assessed in vitro by dual luciferase assay and immunoblot. RESULTS: Pretreatment with miR-200c antagomir decreased post-middle cerebral artery occlusion brain levels of miR-200c, resulting in a significant reduction in infarct volume and neurological deficit. Changes in brain levels of miR-200c inversely correlated with reelin protein expression. Direct targeting of the Reln 3' untranslated region by miR-200c was verified with dual luciferase assay. Inhibition of miR-200c resulted in an increase in cell survival subsequent to in vitro oxidative injury. This effect was blocked by knockdown of reelin mRNA, whereas application of reelin protein afforded protection. CONCLUSIONS: These findings suggest that the poststroke increase in miR-200c contributes to brain cell death by inhibiting reelin expression, and that reducing poststroke miR-200c is a potential target to mitigate stroke-induced brain injury.


Assuntos
Isquemia Encefálica/metabolismo , Moléculas de Adesão Celular Neuronais/biossíntese , Proteínas da Matriz Extracelular/biossíntese , MicroRNAs/administração & dosagem , MicroRNAs/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Serina Endopeptidases/biossíntese , Animais , Isquemia Encefálica/patologia , Moléculas de Adesão Celular Neuronais/antagonistas & inibidores , Células Cultivadas , Proteínas da Matriz Extracelular/antagonistas & inibidores , Marcação de Genes , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteína Reelina
9.
J Neurosci Res ; 93(11): 1703-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26147710

RESUMO

Recent studies have demonstrated that neural stem cell (NSC) culture at physiologically normoxic conditions (2-5% O2) is advantageous in terms of neuronal differentiation and survival. Neuronal differentiation is accompanied by a remarkable shift to mitochondrial oxidative metabolism compared with preferentially glycolytic metabolism of proliferating cells. However, metabolic changes induced by growth in a normoxic (5%) O2 culture environment in NSCs have been minimally explored. This study demonstrates that culturing under 5% O2 conditions results in higher levels of mitochondrial oxidative metabolism, decreased glycolysis, and reduced levels of reactive oxygen species in NSC cultures. Inflammation is one of the major environmental factors limiting postinjury NSC neuronal differentiation and survival. Our results show that NSCs differentiated under 5% O2 conditions possess better resistance to in vitro inflammatory injury compared with those exposed to 20% O2. The present work demonstrates that lower, more physiologically normal O2 levels support metabolic changes induced during NSC neuronal differentiation and provide increased resistance to inflammatory injury, thus highlighting O2 tension as an important determinant of cell fate and survival in various stem cell therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Oxigênio/farmacologia , Animais , Apoptose/fisiologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Inflamação/metabolismo , Camundongos
10.
Neurochem Res ; 40(2): 301-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24993363

RESUMO

Astrocytes are critical regulators of neuronal function and an effective target for stroke therapy in animal models. Identifying individual targets with the potential for simultaneous activation of multiple downstream pathways that regulate astrocyte homeostasis may be a necessary element for successful clinical translation. Mitochondria and microRNAs each represent individual targets with multi-modal therapeutic potential. Mitochondria regulate metabolism and apoptosis, while microRNAs have the capacity to bind and inhibit numerous mRNAs. By combining strategies targeted at maintaining astrocyte function during and following cerebral ischemia, a synergistic therapeutic effect may be achieved.


Assuntos
Astrócitos/fisiologia , MicroRNAs/fisiologia , Mitocôndrias/fisiologia , Acidente Vascular Cerebral/terapia , Animais , Modelos Animais de Doenças , Humanos , Acidente Vascular Cerebral/patologia
11.
Anesthesiology ; 123(4): 810-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26270940

RESUMO

BACKGROUND: Isoflurane induces cell death in neurons undergoing synaptogenesis via increased production of pro-brain-derived neurotrophic factor (proBDNF) and activation of postsynaptic p75 neurotrophin receptor (p75). Astrocytes express p75, but their role in neuronal p75-mediated cell death remains unclear. The authors investigated whether astrocytes have the capacity to buffer increases in proBDNF and protect against isoflurane/p75 neurotoxicity. METHODS: Cell death was assessed in day in vitro (DIV) 7 mouse primary neuronal cultures alone or in co-culture with age-matched or DIV 21 astrocytes with propidium iodide 24 h after 1 h exposure to 2% isoflurane or recombinant proBDNF. Astrocyte-targeted knockdown of p75 in co-culture was achieved with small-interfering RNA and astrocyte-specific transfection reagent and verified with immunofluorescence microscopy. proBDNF levels were assessed by enzyme-linked immunosorbent assay. Each experiment used six to eight replicate cultures/condition and was repeated at least three times. RESULTS: Exposure to isoflurane significantly (P < 0.05) increased neuronal cell death in primary neuronal cultures (1.5 ± 0.7 fold, mean ± SD) but not in co-culture with DIV 7 (1.0 ± 0.5 fold) or DIV 21 astrocytes (1.2 ± 1.2 fold). Exogenous proBDNF dose dependently induced neuronal cell death in both primary neuronal and co-cultures, an effect enhanced by astrocyte p75 inhibition. Astrocyte-targeted p75 knockdown in co-cultures increased media proBDNF (1.2 ± 0.1 fold) and augmented isoflurane-induced neuronal cell death (3.8 ± 3.1 fold). CONCLUSIONS: The presence of astrocytes provides protection to growing neurons by buffering increased levels of proBDNF induced by isoflurane. These findings may hold clinical significance for the neonatal and injured brain where increased levels of proBDNF impair neurogenesis.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Isoflurano/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Precursores de Proteínas/biossíntese , Animais , Astrócitos/patologia , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Células Cultivadas , Técnicas de Cocultura , Camundongos , Neurônios/patologia , Precursores de Proteínas/antagonistas & inibidores
12.
Science ; 381(6655): 306-312, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37471542

RESUMO

Implantable neuroelectronic interfaces have enabled advances in both fundamental research and treatment of neurological diseases but traditional intracranial depth electrodes require invasive surgery to place and can disrupt neural networks during implantation. We developed an ultrasmall and flexible endovascular neural probe that can be implanted into sub-100-micrometer-scale blood vessels in the brains of rodents without damaging the brain or vasculature. In vivo electrophysiology recording of local field potentials and single-unit spikes have been selectively achieved in the cortex and olfactory bulb. Histology analysis of the tissue interface showed minimal immune response and long-term stability. This platform technology can be readily extended as both research tools and medical devices for the detection and intervention of neurological diseases.


Assuntos
Encéfalo , Eletrodos Implantados , Microeletrodos , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Animais , Procedimentos Endovasculares
13.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993229

RESUMO

Implantable neuroelectronic interfaces have enabled significant advances in both fundamental research and treatment of neurological diseases, yet traditional intracranial depth electrodes require invasive surgery to place and can disrupt the neural networks during implantation. To address these limitations, we have developed an ultra-small and flexible endovascular neural probe that can be implanted into small 100-micron scale blood vessels in the brains of rodents without damaging the brain or vasculature. The structure and mechanical properties of the flexible probes were designed to meet the key constraints for implantation into tortuous blood vessels inaccessible with existing techniques. In vivo electrophysiology recording of local field potentials and single-unit spikes has been selectively achieved in the cortex and the olfactory bulb. Histology analysis of the tissue interface showed minimal immune response and long-term stability. This platform technology can be readily extended as both research tools and medical devices for the detection and intervention of neurological diseases.

14.
Aging Dis ; 14(3): 892-903, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37191419

RESUMO

We previously demonstrated that inhibition of miR-200c was protective against stroke in young adult male mice by augmenting sirtuin-1 (Sirt1). In the present study we assessed the role of miR-200c on injury, Sirt1, and bioenergetic and neuroinflammatory markers in aged male and female mice after experimental stroke. Mice were subjected to 1hr of transient middle cerebral artery occlusion (MCAO) and assessed for post-injury expression of miR-200c, Sirt1 protein and mRNA, N6-methyladenosine (m6A) methylated Sirt1 mRNA, ATP, cytochrome C oxidase activity, tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), infarct volume and motor function. MCAO induced a decrease in Sirt1 expression at 1d post-injury only in males. No differences in SIRT1 mRNA were observed between the sexes. Females had greater baseline miR-200c expression and a greater increase in miR-200c in response to stroke, while pre-MCAO levels of m6A SIRT1 was greater in females. Males had lower post-MCAO ATP levels and cytochrome C oxidase activity, and higher TNFα and IL-6. Post-injury intravenous treatment with anti-miR-200c reduced miR-200c expression in both sexes. In males, anti-miR-200c increased Sirt1 protein expression, reduced infarct volume, and improved neurological score. Conversely in females anti-miR-200c had no effect on Sirt1 levels and provided no protection against injury from MCAO. These results provide the first evidence of sexual dimorphism in the role of a microRNA in aged mice after experimental stroke and suggest sex-differences in epigenetic modulation of the transcriptome and downstream effects on miR biological activity may play a role in sexually dimorphic outcomes after stroke in aged brains.

15.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36472910

RESUMO

Pain signals are relayed to the brain via a nociceptive system, and in rare cases, this nociceptive system contains genetic variants that can limit the pain response. Here, we questioned whether a human transient receptor potential vanilloid 1 (TRPV1) missense variant causes a resistance to noxious stimuli and, further, whether we could target this region with a cell-permeable peptide as a pain therapeutic. Initially using a computational approach, we identified a human K710N TRPV1 missense variant in an otherwise highly conserved region of mammalian TRPV1. After generating a TRPV1K710N-knockin mouse using CRISPR/Cas9, we discovered that the K710N variant reduced capsaicin-induced calcium influx in dorsal root ganglion neurons. The TRPV1K710N rodents also had less acute behavioral responses to noxious chemical stimuli and less hypersensitivity to nerve injury, while their response to noxious heat remained intact. Furthermore, blocking this K710 region in WT rodents using a cell-penetrating peptide limited acute behavioral responses to noxious stimuli and returned pain hypersensitivity induced by nerve injury to baseline levels. These findings identify K710 TRPV1 as a discrete site that is crucial for the control of nociception and provide insights into how to leverage rare genetic variants in humans to uncover fresh strategies for developing pain therapeutics.


Assuntos
Roedores , Canais de Cátion TRPV , Animais , Humanos , Camundongos , Capsaicina/farmacologia , Gânglios Espinais , Dor/genética , Limiar da Dor , Canais de Cátion TRPV/genética
17.
Neurochem Int ; 149: 105146, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343653

RESUMO

Embolic stroke results in a necrotic core of cells destined to die, but also a peri-ischemic, watershed penumbral region of potentially salvageable brain tissue. Approaches to effectively differentiate between the ischemic and peri-ischemic zones is critical for novel therapeutic discovery to improve outcomes in survivors of stroke. MicroRNAs are a class of small non-coding RNAs regulating gene translation that have region- and cell-specific expression and responses to ischemia. We have previously reported that global inhibition of cerebral microRNA-200c after experimental stroke in mice is protective, however delineating the post-stroke sub-regional and cell-type specific patterns of post-stroke miR-200c expression are necessary to minimize off-target effects and advance translational application. Here, we detail a novel protocol to visualize regional miR-200c expression after experimental stroke, complexed with visualization of regional ischemia and markers of oxidative stress in an experimental stroke model in mice. In the present study we demonstrate that the fluorescent hypoxia indicator pimonidazole hydrochloride, the reactive-oxygen-species marker 8-hydroxy-deoxyguanosine, neuronal marker MAP2 and NeuN, and the reactive astrocyte marker GFAP can be effectively complexed to determine regional differences in ischemic injury as early as 30 min post-reperfusion after experimental stroke, and can be effectively used to distinguish ischemic core from surrounding penumbral and unaffected regions for targeted therapy. This multi-dimensional post-stroke immunofluorescent imaging protocol enables a greater degree of sub-regional mechanistic investigation, with the ultimate goal of developing more effective post-stroke pharmaceutical therapy.


Assuntos
Ataque Isquêmico Transitório/metabolismo , AVC Isquêmico/metabolismo , MicroRNAs/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Animais , Hipóxia Celular/fisiologia , Expressão Gênica , Ataque Isquêmico Transitório/genética , AVC Isquêmico/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética
18.
Mitochondrion ; 59: 105-112, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933660

RESUMO

Brain-enriched microRNA-338 (miR-338) is known to play a central role in brain mitochondrial function, however the role of miR-338 in stroke injury remains unknown. This study investigated the role of miR-338 in injury from transient focal cerebral ischemia in mice, and in cell survival and mitochondrial function after in vitro ischemia in astrocyte and neuronal cultures. Pre-treatment of mice with intracerebroventricular injection of miR-338 antagomir 24 h prior to 1 h of middle cerebral artery occlusion (MCAO) significantly reduced infarct size and improved neurological score at both 24 h and 7d after injury. Levels of the miR-338 target cytochrome-c oxidase subunit 4I1 (COX4I1), which plays an essential role in maintaining brain mitochondrial ATP production, were increased in miR-338 antagomir-treated mice. Mouse primary astrocyte cell cultures subjected to glucose deprivation exhibited increased cell survival when pre-treated with miR-338 inhibitor, and greater cell death with miR-338 mimic. Decreased miR-338 levels were associated with increased ATP production, augmented cytochrome c oxidative (CcO) activity and preservation of COX4I1. In vitro protection with miR-338 inhibitor was blocked by concurrent knockdown of COX4I1 with small interfering RNA. Parallel studies in mouse neuronal N2a cultures resulted in preserved ATP content and CcO activity with miR-338 inhibition, indicating a shared miR-338-dependent response to ischemic stress between brain cell types. These results suggest that miR-338 inhibition and/or COX4I1-targeted therapies may be novel clinical strategies to protect against stroke injury via preservation of mitochondrial function in multiple cell types.


Assuntos
Astrócitos/citologia , Isquemia Encefálica/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , MicroRNAs/genética , Mitocôndrias/metabolismo , Neurônios/citologia , Animais , Astrócitos/química , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/química , Cultura Primária de Células
19.
Am J Physiol Regul Integr Comp Physiol ; 298(4): R983-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20130224

RESUMO

One proposed explanation for the Vo(2) slow component is that lower-threshold motor units may fatigue and develop little or no tension but continue to use O(2), thereby resulting in a dissociation of cellular respiration from force generation. The present study used intact isolated single myocytes with differing fatigue resistance profiles to investigate the relationship between fatigue, tension development, and aerobic metabolism. Single Xenopus skeletal muscle myofibers were allocated to a fast-fatiguing (FF) or a slow-fatiguing (SF) group, based on the contraction frequency required to elicit a fall in tension to 60% of peak. Phosphorescence quenching of a porphyrin compound was used to determine Delta intracellular Po(2) (Pi(O(2)); a proxy for Vo(2)), and developed isometric tension was monitored to allow calculation of the time-integrated tension (TxT). Although peak DeltaPi(O(2)) was not different between groups (P = 0.36), peak tension was lower (P < 0.05) in SF vs. FF (1.97 +/- 0. 17 V vs. 2. 73 +/- 0.30 V, respectively) and time to 60% of peak tension was significantly longer in SF vs. FF (242 +/- 10 s vs. 203 +/- 10 s, respectively). Before fatigue, both DeltaPi(O(2)) and TxT rose proportionally with contraction frequency in SF and FF, resulting in DeltaPi(O(2))/TxT being identical between groups. At fatigue, TxT fell dramatically in both groups, but DeltaPi(O(2)) decreased proportionately only in the FF group, resulting in an increase in DeltaPi(O(2))/TxT in the SF group relative to the prefatigue condition. These data show that more fatigue-resistant fibers maintain aerobic metabolism as they fatigue, resulting in an increased O(2) cost of contractions that could contribute to the Vo(2) slow component seen in whole body exercise.


Assuntos
Células Musculares/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Consumo de Oxigênio , Animais , Estimulação Elétrica , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fosforilação Oxidativa , Estresse Mecânico , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA