RESUMO
Here we present a novel electrically switchable nanovalve array based on an intrinsic conductive polymer that has the capabilities to change its volume depending on its redox state. The polymer is created by anodic deposition of a sodium dodecylbenzenesulfonate (DBS)-doped polypyrrole (PPy). Optimization of the DBS-doped PPy layers revealed an actuatoric performance of up to 10% out of plane volume change. More interestingly, the electrochemical characterization revealed an actuatoric monostable polymer that could be used to fabricate nanovalve arrays that have a native opened state when no potential is applied and that can be closed when a reductive potential is applied. As a proof of concept, Atto488-labeled biotin (Biotin-Atto488) was used as a model compound and defined nanovalve arrays with nanopores in the range of 10 nm in diameter (opened state) were fabricated. Afterward, we were able to successfully prove the functionality of our nanovalve array by monitoring the flow-through rates of the Biotin-Atto488. More strikingly, we could demonstrate for the first time the robust and long-term stability of our nanovalve array without any performance loss for at least 72 h and retention capabilities of up to 90%. Furthermore, the demonstrated long-term stability was achieved under biocompatible conditions without the need of toxic dopant supplementation of the flow-through solution. Thus, our novel functional long-term stable nanovalve array offers the capabilities for practical applications.
RESUMO
BACKGROUND: Mesenchymal stem cells (MSCs) are increasingly used as therapeutic agents as well as research tools in regenerative medicine. Development of technologies which allow storing and banking of MSC with minimal loss of cell viability, differentiation capacity, and function is required for clinical and research applications. Cryopreservation is the most effective way to preserve cells long term, but it involves potentially cytotoxic compounds and processing steps. Here, we investigate the effect of decreasing dimethyl sulfoxide (DMSO) concentrations in cryosolution by substituting with hydroxyethyl starch (HES) of different molecular weights using different freezing rates. Post-thaw viability, phenotype and osteogenic differentiation capacity of MSCs were analysed. RESULTS: The study confirms that, for rat MSC, cryopreservation effects need to be assessed some time after, rather than immediately after thawing. MSCs cryopreserved with HES maintain their characteristic cell surface marker expression as well as the osteogenic, adipogenic and chondrogenic differentiation potential. HES alone does not provide sufficient cryoprotection for rat MSCs, but provides good cryoprotection in combination with DMSO, permitting the DMSO content to be reduced to 5%. There are indications that such a combination would seem useful not just for the clinical disadvantages of DMSO but also based on a tendency for reduced osteogenic differentiation capacity of rat MSC cryopreserved with high DMSO concentration. HES molecular weight appears to play only a minor role in its capacity to act as a cryopreservation solution for MSC. The use of a 'straight freeze' protocol is no less effective in maintaining post-thaw viability of MSC compared to controlled rate freezing methods. CONCLUSION: A 5% DMSO / 5% HES solution cryopreservation solution using a 'straight freeze' approach can be recommended for rat MSC.